We propose partial pre-equalization for indoor optical wireless transmissions based on asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with intensity modulation and direct detection (IM/DD). Bit loading is applied to minimize the transmit optical power for a fixed target BER. Similar to pre-equalization, for diffuse indoor optical wireless channels, partial pre-equalization can reduce the transmit optical power over post-equalization for point-to-point transmissions. In addition, we consider broadcast transmissions to multiple users with possibly different channel qualities, where pre-equalization is not applicable. Finally, we specify an appropriate channel estimate at the transmitter for such broadcast transmissions.
This paper analyzes the performances and presents the benets of partial pre-equalization for indoor optical wireless transmissions based on asymmetrically clipped optical orthogonal frequency division multiplexing (ACO-OFDM) with intensity modulation and direct detection (IM/DD). In particular, for diffuse indoor optical wireless channels, partial pre-equalization can reduce the optical transmit power over post-equalization at the same target bit error rate (BER) for point-to-point transmissions even with imperfect channel knowledge. To further im-prove its performance, bit loading is considered to minimize the optical transmit power of ACO-OFDM while maintaining a constant target BER. In addition, broadcast transmissions to multiple users with possibly dierent channel qualities are considered, where pre-equalization is not applicable. Finally, we specify an appropriate channel estimate at the transmitter for such broadcast transmissions.
This paper investigates efficient user grouping methods for multi-user multi-input multi-output (MU-MIMO) visible light communication (VLC) systems. Block diagonalization (BD) precoding is considered for interference avoidance. In addition, time division multiplexing (TDM) is applied to perform user grouping when the number of users exceeds the limit of BD precoding based on the number of light emitting diode (LED) transmitters and the total number of users' photodiodes (PDs). User grouping methods are proposed based on pairwise interference considerations among users in the same group. The proposed methods can be implemented through integer linear programming (ILP), which requires less computation than exhaustive search. The numerical results on the average minimum user throughputs over random scenarios indicate that the proposed hybrid method can significantly outperform random user grouping and performs reasonably well compared to exhaustive search. Finally, this study demonstrates that, when BD precoding greatly attenuates the desired user signals, user grouping can help improve minimum user throughputs even though BD precoding can support all users as a single group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.