The laminin ␣4 chain, a component of laminin-8 and -9, is expressed in basement membranes, such as those beneath endothelia, the perineurium of peripheral nerves, and around developing muscle fibers. Laminin ␣4-null mice presented with hemorrhages during the embryonic and neonatal period and had extensive bleeding and deterioration of microvessel growth in experimental angiogenesis, as well as mild locomotion defects. Histological examination of newborn mice revealed delayed deposition of type IV collagen and nidogen into capillary basement membranes, and electron microscopy showed discontinuities in the lamina densa. The results demonstrate a central role for the laminin ␣4 chain in microvessel growth and, in the absence of other laminin ␣ chains, in the composition of endothelial basement membranes.
Precise apposition of pre- to postsynaptic specializations is required for optimal function of chemical synapses, but little is known about how it is achieved. At the skeletal neuromuscular junction, active zones (transmitter release sites) in the nerve terminal lie directly opposite junctional folds in the postsynaptic membrane. Few active zones or junctional folds form in mice lacking the laminin beta2 chain, which is normally concentrated in the synaptic cleft. beta2 and the broadly expressed gamma1 chain form heterotrimers with alpha chains, three of which, alpha2, alpha4 and alpha5, are present in the synaptic cleft. Thus, alpha2beta2gamma1, alpha4beta2gamma1 and alpha5beta2gamma1 heterotrimers are all lost in beta2 mutants. In mice lacking laminin alpha4, active zones and junctional folds form in normal numbers, but are not precisely apposed to each other. Thus, formation and localization of synaptic specializations are regulated separately, and alpha4beta2gamma1 (called laminin-9) is critical in the latter process.
We investigated the effects of exendin-4 on neural stem/progenitor cells in the subventricular zone of the adult rodent brain and its functional effects in an animal model of Parkinson's disease. Our results showed expression of GLP-1 receptor mRNA or protein in the subventricular zone and cultured neural stem/progenitor cells isolated from this region. In vitro, exendin-4 increased the number of neural stem/progenitor cells, and the number of cells expressing the neuronal markers microtubule-associated protein 2, beta-III-tubulin, and neuron-specific enolase. When exendin-4 was given intraperitoneally to naïve rodents together with bromodeoxyuridine, a marker for DNA synthesis, both the number of bromodeoxyuridine-positive cells and the number of neuronal precursor cells expressing doublecortin were increased. Exendin-4 was tested in the 6-hydroxydopamine model of Parkinson's disease to investigate its possible functional effects in an animal model with neuronal loss. After unilateral lesion and a 5-week stabilization period, the rats were treated for 3 weeks with exendin-4. We found a reduction of amphetamine-induced rotations in animals receiving exendin-4 that persisted for several weeks after drug administration had been terminated. Histological analysis showed that exendin-4 significantly increased the number of both tyrosine hydroxylase- and vesicular monoamine transporter 2-positive neurons in the substantia nigra. In conclusion, our results show that exendin-4 is able to promote adult neurogenesis in vitro and in vivo, normalize dopamine imbalance, and increase the number of cells positive for markers of dopaminergic neurons in the substantia nigra in a model of Parkinson's disease.
Laminins are ␣␥ heterotrimeric extracellular proteins that regulate cellular functions by adhesion to integrin and nonintegrin receptors. Laminins containing ␣4 and ␣5 chains are expressed in bone marrow, but their interactions with hematopoietic progenitors are unknown. We studied human bone marrow cell adhesion to laminin-10/11 (␣51␥1/␣52␥1), laminin-8 (␣41␥1), laminin-1 (␣11␥1), and fibronectin. About 35% to 40% of CD34 ؉ and CD34 ؉ CD38 ؊ stem and progenitor cells adhered to laminin-10/11, and 45% to 50% adhered to fibronectin, whereas they adhered less to laminin-8 and laminin-1. Adhesion of CD34 ؉ CD38 ؊ cells to laminin-10/11 was maximal without integrin activation, whereas adhesion to other proteins was dependent on protein kinase C activation by 12-tetradecanoyl phorbol-13-acetate (TPA). Fluorescence-activated cell-sorting (FACS) analysis showed expression of integrin ␣6 chain on most CD34 ؉ and CD34 ؉ CD38 ؊ cells. Integrin ␣6 and 1 chains were involved in binding of both cell fractions to laminin-10/11 and laminin-8. Laminin-10/11 was highly adhesive to lineagecommitted myelomonocytic and erythroid progenitor cells and most lymphoid and myeloid cell lines studied, whereas laminin-8 was less adhesive. In functional assays, both laminin-8 and laminin-10/11 facilitated stromal-derived factor-1␣ (SDF-1␣)-stimulated transmigration of CD34 ؉ cells, by an integrin ␣6 receptor-mediated mechanism. In conclusion, we demonstrate laminin isoform-specific adhesive interactions with human bone marrow stem, progenitor, and more differentiated cells
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.