Improved management and impermeability of refrigerants is a leading solution to reverse global warming. Therefore, crank-driven reciprocating refrigerator compressors are gradually replaced by more efficient, oil-free and hermetic linear compressors. However, the design and operation of an electromagnetic actuator, fitted on the compression requirements of a reciprocating linear compressor, received limited attention. Current research mainly focuses on the optimisation of short stroke linear compressors, while long stroke compressors benefit from higher isentropic and volumetric efficiencies. Moreover, designing such a system focuses mainly on the trade-off between number of copper windings and the current required, due to the large computational cost of performing a full geometric design optimisation based on a Finite Element Method. Therefore, in this paper, a computationally-efficient, multi-objective design optimisation for six geometric design parameters has been applied on a solenoid driven linear compressor with a stroke of 44.2 mm. The proposed multi-fidelity optimisation approach takes advantage of established models for actuator optimisation in mechatronic applications, combined with analytical equations established for a solenoid actuator to increase the overall computational efficiency. This paper consists of the multi-fidelity optimisation algorithm, the analytic model and Finite Element Method of a solenoid and the optimised designs obtained for optimised power and copper volume, which dominates the actuator cost. The optimisation results illustrate a trade-off between minimising the peak power and minimising the volume of copper windings. Considering this trade-off, an intermediate design is highlighted, which requires 33.3% less power, at the expense of an increased copper volume by 5.3% as opposed to the design achieving the minimum copper volume. Despite that the effect of the number of windings on the input current remains a dominant design characteristic, adapting the geometric parameters reduces the actuator power requirements significantly as well. Finally, the multi-fidelity optimisation algorithm achieves a 74% reduction in computational cost as opposed to an entire Finite Element Method optimisation. Future work focuses on a similar optimisation approach for a permanent magnet linear actuator.
Research towards (compliant) actuators, especially redundant ones like the Series Parallel Elastic Actuator (SPEA), has led to the development of drive trains, which have demonstrated to increase efficiency, torque-to-mass-ratio, power-to-mass ratio, etc. In the field of robotics such drive trains can be implemented, enabling technological improvements like safe, adaptable and energy-efficient robots. The choice of the used motor and transmission system, as well as the compliant elements composing the drive train, are highly dependent of the application and more specifically on the allowable weight and size. In order to optimally design an actuator adapted to the desired characteristics and the available space, scaling laws governing the specific actuator can simplify and enhance the reliability of the design process. Although scaling laws of electric motors and links are known, none have been investigated for a complete redundant drive train. The present study proposes to fill this gap by providing scaling laws for electric motors in combination with their transmission system. These laws are extended towards parallelization, i.e. replacing one big motor with gearbox by several smaller ones in parallel. The results of this study show that the torque/mass ratio for a motor-gearbox can not be increased by parallelization, but that it can increase the torque/volume ratio. This is however only the case if a good topology is chosen.
Conventional implementation of slider-crank mechanisms result in high loads transmitted through the mechanical structure, inhibiting the design of compact and oil-free machines. Therefore, this research proposes to step away from the conventional, i.e. rotative, actuation and to investigate local linear actuation on the slider-component directly, while maintaining the kinematic link of the slider-crank configuration. In this work the local linear actuating principle is evaluated experimentally where the goal is to obtain a continuous movement of the slider mechanism where Top Dead Centre & Bottom Dead Centre are reached and to minimise the loads transmitted through the mechanical structure. The non-isochronous transient behaviour of a slider-crank mechanism loaded with a spring-damper element is detailed as well as the optimal working conditions at steady state to achieve a reduced loading of the kinematic structure. By matching the operating frequency and resonance frequency of the system, a reduction of the loads transmitted through the system by 63% of the nominal spring load can be achieved. Further experimental (and multibody mechanical) investigation on the influence of flywheel exposes a clear trade-off between the sensitivity of the system and the transmission of the actuation force through the kinematic link.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.