Little evidence of benefits from female mate choice has been found when males provide no parental care or resources. Yet, good genes models of sexual selection suggest that elaborated male sexual characters are reliable signals of mate quality and that the offspring of males with elaborate sexual ornaments will perform better than those of males with less elaborate ornaments. We used cod (Gadus morhua L.), an externally fertilizing species where males provide nothing but sperm, to examine the potential of optimal mate selection with respect to offspring survival. By applying in vitro fertilizations, we crossed eight females with nine males in all possible combinations and reared each of the 72 sib groups. We found that offspring survival was dependent on which female was mated with which male and that optimal mate selection has the potential to increase mean offspring survival from 31.9 to 55.6% (a 74% increase). However, the size of the male sexual ornaments and sperm quality (i.e. sperm velocity and sperm density) could not predict offspring survival. Thus, even if there may be large fitness benefits of mate selection, we might not yet have identified the male characteristics generating high offspring survival.
Hypotheses and models to explain female ornaments often assume that the elaborated traits are condition dependent; nevertheless, few empirical studies have addressed this topic. We studied a population of three‐spined sticklebacks (Gasterosteus aculeatus) in which the females have conspicuous, carotenoid‐based red coloration to their pelvic spines. The red coloration seems not to be condition dependent, as coloration is negatively associated with age and body length and not associated with condition. Furthermore, redder females did not have a lower density of leucocytes. We found a negative association between the females’ red carotenoid‐based coloration in the spines and the amount of carotenoids in the female's gonads. Males choosing red‐coloured females will fertilize eggs with small amounts of carotenoids and appear not to gain any benefit from their mates’ phenotypic quality that could result in offspring of improved quality. These results do not support the ‘direct selection hypothesis’ to explain the existence of the female ornaments.
Summary1. The evolution and signalling content of female ornamentation has remained an enduring challenge to evolutionary biologists, despite the fact that secondary sexual characters are widespread in females. While females usually invest significant amounts of their resources, including carotenoids, in offspring, all the resources allocated to elaborate ornamentation reduce resources available for other purposes. This may in turn constrain female fitness leading to dishonest female signalling. 2. We review the literature for empirical studies on mutually ornamented species with conventional sex roles, by focusing on the association between female ornaments and quality of their offspring. 3. We found 43 papers where 33 (77%) are bird-studies, nine (21%) are on fishes, and one (2%) is a lizard-study. Nine of these report negative, 14 non-existing, and 20 positive associations between female ornament and offspring quality. Eighteen of the bird studies (55%) show a positive association between the two traits investigated, whereas five (15%) of the studies report a negative association. The number of fish studies, although few, is skewed in the opposite direction with two (22%) and four (44%) studies supporting positive and negative association, respectively. A minority of studies on carotenoids-based ornaments reports a positive association (4 of 18 studies, or 22%) between the traits, which is low compared to studies on non-carotenoids-based ornaments (16 of 25 studies, or 64%). 4. The above-mentioned relative large number of studies with negative association, especially common in studies on fishes and in carotenoids-based-ornaments, challenges the generality of the direct selection hypothesis to account for female fineries. This is important because this hypothesis seems to have strong support in recent literature on the topic. In the present paper, we also propose possible explanations for the observed differences between taxa and suggest directions and ideas for future research on the evolution of female ornamentation.
Atlantic cod displays a range of phenotypic and genotypic variations, which includes the differentiation into coastal stationary and offshore migratory types of cod that co-occur in several parts of its distribution range and are often sympatric on the spawning grounds. Differentiation of these ecotypes may involve both historical separation and adaptation to ecologically distinct environments, the genetic basis of which is now beginning to be unravelled. Genomic analyses based on recent sequencing advances are able to document genomic divergence in more detail and may facilitate the exploration of causes and consequences of genome-wide patterns. We examined genomic divergence between the stationary and migratory types of cod in the Northeast Atlantic, using next-generation sequencing of pooled DNA from each of two population samples. Sequence data was mapped to the published cod genome sequence, arranged in more than 6000 scaffolds (611 Mb). We identified 25 divergent scaffolds (26 Mb) with a higher than average gene density, against a backdrop of overall moderate genomic differentiation. Previous findings of localized genomic divergence in three linkage groups were confirmed, including a large (15 Mb) genomic region, which seems to be uniquely involved in the divergence of migratory and stationary cod. The results of the pooled sequencing approach support and extend recent findings based on single-nucleotide polymorphism markers and suggest a high degree of reproductive isolation between stationary and migratory cod in the North-east Atlantic.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.