Current trends in environmental care are characterised by the principles of comprehensiveness, integration, interdisciplinarity and transregionality. It is in this spirit that the methodological, legislative and economic instruments develop, and this whole trend is referred to using the term 'environmental management'. Environmental management constitutes a set of technical instruments and methods for managing the environment, based upon an identification of the environmental aspects of products, activities and services of any type of organisation, with the aim to adopt and implement effective proactive measures to reduce their negative impact on the environment. These measures, along with their level, relate to an organisation's possibilities, the market's pressure on it, and primarily with the organisation's management's awareness, maturity and ability to anticipate the introduction of stricter requirements. Environmental management, in the industrial production and service sectors, is one of the the most effective instruments for achieving the priority goal, which is to minimise the negative impact of production activities on the individual elements of the environment as part of the global trend of reducing the negative impact of human activity on the environment. The objective of this article is to indicate possibilities to improve the environment through the basic principles and techniques of integrated environmental management.
Temperature intervals of oxide reduction processes during sintering of the Fe-3%Cr-0.5%Mo prealloyed powder using continuous monitoring of processing-exhaust gas composition (CO, CO2, and H2O) were identified and interpreted in relation to density (6.5–7.4 g/cm3), sintering temperature (1120 and 1200°C), heating and cooling rates (10 and 50°C/min), carbon addition (0.5/0.6/0.8%), type (10%H2-N2, N2), and purity (5.0 and 6.0) of the sintering atmosphere. The progress in reduction processes was evaluated by oxygen and carbon contents in sintered material and fracture strength values as well. Higher sintering temperature (1200°C) and density <7.0 g/cm3resulted in a relative decrease of oxygen content by more than 80%. The deterioration of microclimate purity of inner microvolumes of compacts shifted the thermodynamic equilibrium towards oxidation. It resulted in a closing of residual oxides inside interparticle necks. The reducing ability of the N2atmosphere can be improved by sintering in a graphite container. High density of 7.4 g/cm3achieved by double pressing indicated a negative effect on reduction processes due to restricted replenishment of the microclimate atmosphere with the processing gas. In terms of strength properties, carbon content should not be higher than ~0.45%.
The authors verified the possibility of antioxidative protection of squalene adjuvant emulsions by the antioxidants α-tocopherol and β-carotene. They determined the influence of β-carotene on the stability and antigenic effectiveness of adjuvant emulsion in combination with rabies vaccine. The composition of the adjuvant emulsions or vaccines was: 2.5% squalene; 6% detergents; 0.5% antioxidant; 91% water phase. The oxidative injury after UV-irradiation was followed by the detection of the peroxide value of the emulsions. The stability of the emulsions was evaluated by the determination of the emulsion's particle size. The level of rabies antibodies (RAB) in mice sera until day 90 after vaccination, was determined by the rapid fluorescent focus inhibition test. In the in vitro system of squalene adjuvant, α-tocopherol acted as a prooxidant, while β-carotene effectively reduced the oxidative injury. The homogenization of the squalene adjuvant during a prolonged period from 8 to 10 min did not change the particle size. The oxidation processes were efficiently reduced by β-carotene during the preparation process and also during the 70-d storage. The vaccine with β-carotene induced a gradual increase in the RAB levels with the highest value on day 28. While the inactivated rabies vaccine with adjuvant without β-carotene developed a rapid formation of RAB, the application of the vaccine with β-carotene induced a slower but more uniform production of RAB. The level of RAB was significantly higher after the application of the vaccine with β-carotene and reached the protective value of 0.5 IU/mL, in contrast to the vaccine without β-carotene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.