Psychosocial factors are strongly associated with unplanned recurrent readmissions or mortality following an admission to hospital for HF. Further research is needed to show whether recognition of these factors and support tailored to individual patients' needs will improve outcomes.
We have developed hydrophobic electrodes that provide all morphological waveforms without distortion of an ECG signal for both dry and water-immersed conditions. Our electrode is comprised of a mixture of carbon black powder (CB) and polydimethylsiloxane (PDMS). For feasibility testing of the CB/PDMS electrodes, various tests were performed. One of the tests included evaluation of the electrode-to-skin contact impedance for different diameters, thicknesses, and different pressure levels. As expected, the larger the diameter of the electrodes, the lower the impedance and the difference between the large sized CB/PDMS and the similarly-sized Ag/AgCl hydrogel electrodes was at most 200 kΩ, in favor of the latter. Performance comparison of CB/PDMS electrodes to Ag/AgCl hydrogel electrodes was carried out in three different scenarios: a dry surface, water immersion, and postwater immersion conditions. In the dry condition, no statistical differences were found for both the temporal and spectral indices of the heart rate variability analysis between the CB/PDMS and Ag/AgCl hydrogel (p > 0.05) electrodes. During water immersion, there was significant ECG amplitude reduction with CB/PDMS electrodes when compared to wet Ag/AgCl electrodes kept dry by their waterproof adhesive tape, but the reduction was not severe enough to obscure the readability of the recordings, and all morphological waveforms of the ECG signal were discernible even when motion artifacts were introduced. When water did not penetrate tape-wrapped Ag/AgCl electrodes, high fidelity ECG signals were observed. However, when water penetrated the Ag/AgCl electrodes, the signal quality degraded to the point where ECG morphological waveforms were not discernible.
Background: Models for predicting the outcome of patients hospitalized for heart failure (HF) rarely take a holistic view. We assessed the ability of measures of frailty and social support in addition to demographic, clinical, imaging and laboratory variables to predict short-term outcome for patients discharged after a hospitalization for HF. Methods: OPERA-HF is a prospective observational cohort, enrolling patients hospitalized for HF in a single center in Hull, UK. Variables were combined in a logistic regression model after multiple imputation of missing data to predict the composite outcome of death or readmission at 30 days. Comparisons were made to a model using clinical variables alone. The discriminative performance of each model was internally validated with bootstrap re-sampling. Results: 1094 patients were included (mean age 77 [interquartile range 68-83] years; 40% women; 56% with moderate to severe left ventricular systolic dysfunction) of whom 213 (19%) had an unplanned re-admission and 60 (5%) died within 30 days. For the composite outcome, a model containing clinical variables alone had an area under the receiver-operating characteristic curve (AUC) of 0.68 [95% CI 0.64-0.72]. Adding marital status, support from family and measures of physical frailty increased the AUC (p<0.05) to 0.70 [95% CI 0.66-0.74]. Conclusions: Measures of physical frailty and social support improve prediction of 30-day outcome after an admission for HF but predicting near-term events remains imperfect. Further external validation and improvement of the model is required.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.