EGF receptor (EGFR) inhibition is efficacious in cancer therapy, but initially sensitive tumors often develop resistance. In this study, we investigated the potential to overcome acquired resistance to EGFR inhibitors with MEHD7945A, a monoclonal antibody that dually targets EGFR and HER3 (ErbB3). In cancer cells resistant to cetuximab and erlotinib, we found that MEHD7945A, but not single target EGFR inhibitors, could inhibit tumor growth and cell-cycle progression in parallel with EGFR/HER3 signaling pathway modulation. MEHD7945A was more effective than a combination of cetuximab and anti-HER3 antibody at inhibiting both EGFR/HER3 signaling and tumor growth. In human tumor xenograft models, we confirmed the greater antitumor potency of MEHD7945A than cetuximab or erlotinib. MEHD7945A retained potent activity in tumors refractory to EGFR inhibitor alone. Furthermore, MEHD7945A also limited cross-resistance to radiation in EGFR inhibitor-resistant cells by modulating cell-cycle progression and repair processes that control apoptotic cell death. Taken together, our findings confirm an important role of compensatory HER3 signaling in the development of acquired resistance to EGFR inhibitors and offer preclinical proof-of-concept that MEHD7945A can effectively overcome EGFR inhibitor resistance. Cancer Res; 73(2); 824-33. Ó2012 AACR.
Background and Purpose
CLR1404 is a phospholipid ether that exhibits selective uptake and retention in malignant tissues. Radiolabeled CLR1404 enables tumor-specific positron-emission tomography (PET) imaging (124I) and targeted delivery of ionizing radiation (131I). Here we describe the first preclinical studies of this diapeutic molecule in head and neck cancer (HNC) models.
Material and Methods
Tumor-selective distribution of 124I-CLR1404 and therapeutic efficacy of 131I-CLR1404 was tested in HNC cell lines and patient-derived xenograft tumor models. Monte Carlo dose calculations and 124I-CLR1404 PET/CT imaging were used to examine 131I-CLR1404 dosimetry in preclinical HNC tumor models.
Results
HNC tumor xenograft studies including patient-derived xenografts demonstrate tumor-selective uptake and retention of 124I-CLR1404 resulting in a model of highly conformal dose distribution for 131I-CLR1404. We observe dose-dependent response to 131I-CLR1404 with respect to HNC tumor xenograft growth inhibition and this effect is maintained together with external beam radiation.
Conclusions
We confirm the utility of CLR1404 for tumor imaging and treatment of HNC. This promising agent warrants further investigation in a developing phase I trial combining 131I-CLR1404 with reduced-dose external beam radiation in patients with loco-regionally recurrent HNC.
Sym004 represents a novel EGFR targeting approach comprised of a mixture of two anti-EGFR antibodies directed against distinct epitopes of EGFR. In contrast to single anti-EGFR antibodies, Sym004 induces rapid and highly efficient degradation of EGFR. In the current study, we examine the capacity of Sym004 to augment radiation response in lung cancer and head and neck (H&N) cancer model systems. We first examined the anti-proliferative effect of Sym004 and confirmed 40∼60% growth inhibition by Sym004. Using clonogenic survival analysis, we identified that Sym004 potently increased cell kill by up to 10-fold following radiation exposure. A significant increase of γH2AX foci resulting from DNA double strand breaks was observed in Sym004-treated cells following exposure to radiation. Mechanistic studies further demonstrated that Sym004 enhanced radiation response via induction of cell cycle arrest followed by induction of apoptosis and cell death reflecting inhibitory effects on DNA damage repair. The expression of several critical molecules involved in radiation-induced DNA damage repair were significantly inhibited by Sym004, including DNAPK, NBS1, RAD50, and BRCA1. Using single and fractionated radiation in human tumor xenograft models, we confirmed that the combination of Sym004 and radiation resulted in significant tumor regrowth delay and superior anti-tumor effects compared to treatment with Sym004 or radiation alone. Taken together, these data reveal the strong capacity of Sym004 to augment radiation response in lung and H&N cancers. The unique action mechanism of Sym004 warrants further investigation as a promising EGFR targeting agent combined with radiotherapy in cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.