Post-operative assessment of resected tumor margins is critical to ensure the entirety of malignant tissue has been removed from a patient. Microscopic assessment of tissue post-excision is the current gold standard, however the long wait times for proper specimen evaluation limit a surgeon’s ability to be certain they obtained clear margins. To address this need, fluorescence-guided surgery approaches are under development that can yield molecular contrast between healthy and malignant tissues intraoperatively. In head and neck cancer specifically, heterogenous optical properties lead to poor identification in margins greater than 1 mm thick when viewed with single projections. Thus, we demonstrate the use of variable aperture approach to decrease the effects of local optical property variations in the imaged specimen. Here we use Monte Carlo simulations to verify the utility of the idea in a homogenous medium as well in a medium with heterogenous properties. We demonstrate that a ratio metric approach can provide near identical depth discrimination as a single projection in a homogenous medium and is further capable of reducing pixel variability due to local optical properties in a heterogenous medium than a single projection alone.
Many head and neck squamous cell carcinoma surgical patients are left with residual tumor post excision surgery (inadequate margins). We present an imaging strategy capable of rapid margin status assessment to reduce overall surgical burden.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.