The goal of this contribution is summary of physical -chemistry properties of usually used foundry silica and no -silica sands in Czech foundries. With the help of dilatometry analysis theoretical assumptions of influence of grain shape and size on dilatation value of sands were confirmed. Determined was the possibility of dilatometry analysis employment for preparing special (hybrid) sands with lower and/or more linear character of dilatation.
The use of precast steel fibre reinforced concrete (SFRC) for tunnel segments is a relatively new application of this material. It was first applied in Italy in the 1980s. However, it did not begin to be widely applied until after 2000. The Czech Technical University in Prague (CTU), together with Metrostav, carried out a study to evaluate the use of this new technology for tunnels in the Czech Republic. The first tests were carried out on small samples (beams and cubes) produced from SFRC to find an appropriate type and an appropriate dosage of fibres. The tests were also used to verify other factors affecting the final product (e.g. production technology). Afterwards, SFRC segments were produced and then tested at the Klokner Institute of CTU. Successful test results confirmed that it was possible to use SFRC segments for Czech transport tunnels. Consequently a 15 m-long section of segmental lining generated from SFRC without steel rebars was constructed as part of line A of the Prague metro.
The article is focused on thermomechanical and plastic properties of two high-manganese TRIPLEX type steels with an internal marking 1043 and 1045. Tensile tests at ambient temperature and at a temperature interval 600°C to 1100°C were performed for these heats with a different chemical composition. After the samples having been ruptured, ductility was observed which was expressed by reduction of material after the tensile test. Then the stacking fault energy was calculated and dilatation of both high-manganese steels was measured. At ambient temperature (20°C), 1043 heat featured higher tensile strength by 66MPa than 1045 heat. Microhardness was higher by 8HV0,2 for 1045 steel than for 1043 steel (203HV0,2). At 20°C, ductility only differed by 3% for the both heats. Decrease of tensile properties occurred at higher temperatures of 600 up to 1100°C. This tensile properties decrease at high temperatures is evident for most of metals. The strength level difference of the both heats in the temperature range 20°C up to 1100°C corresponded to 83 MPa, while between 600°C and 1100°C the difference was only 18 MPa. In the temperature range 600°C to 800°C, a decrease in ductility values down to 14 % (1045 heat), or 22 % (1043 heat), was noticed.This decrease was accompanied with occurrence of complex Aluminium oxides in a superposition with detected AlN particles. Further ductility decrease was only noted for 1043 heat where higher occurrence of shrinkage porosity was observed which might have contributed to a slight decrease in reduction of area values in the temperature range 900°C to 1100°C, in contrast to 1045 heat matrix.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.