The hemG gene of Escherichia coli K12 is involved in the activity of protoporphyrinogen oxidase, the enzyme responsible for the conversion of protoporphyrinogen IX into protoporphyrin IX during heme and chlorophyll biosynthesis. The gene is located at min 87 on the genetic map of E. coli K12. The hemG gene was isolated by a mini-Mu in vivo cloning procedure. As expected, the hemG gene is able to restore normal growth to the hemG mutant, and the transformed cells display strong protoporphyrinogen oxidase activity. Sequencing of the hemG gene allowed us to identify an open reading frame of 546 nucleotides (181 amino acids), within the minimal fragment able to complement the mutant. The presumed molecular mass of the HemG protein is 21,202 Da, in agreement with values found by SDS-PAGE, in a DNA-directed coupled transcription-translation system. The identity of the first 18 amino acids at the amino-terminal end of the protein was confirmed by microsequencing. To our knowledge, this is the first cloning of a gene involved in the protoporphyrinogen oxidase activity of E. coli.
In a recent paper (1), we described the cloning and sequencing of the hemp gene, the second member of the Uro operon. Sequencing the DNA past the stop codon of the hemD gene revealed the presence of another ORF of at least
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.