Aristolochic acid (AA) causes aristolochic acid nephropathy, Balkan endemic nephropathy, and their urothelial malignancies. To identify enzymes involved in the metabolism of aristolochic acid I (AAI), the major toxic component of AA we used HRN (hepatic cytochrome P450 [Cyp] reductase null) mice, in which NADPH:Cyp oxidoreductase (Por) is deleted in hepatocytes. AAI was demethylated by hepatic Cyps in vitro to 8-hydroxy-aristolochic acid I (AAIa), indicating that less AAI is distributed to extrahepatic organs in wild-type (WT) mice. Indeed, AAI-DNA-adduct levels were significantly higher in organs of HRN mice, having low hepatic AAI demethylation capacity, than in WT mice. Absence of AAI demethylation in HRN mouse liver was confirmed in vitro; hepatic microsomes from WT, but not from HRN mice, oxidized AAI to AAIa. To define the role of hepatic Cyps in AAI demethylation, modulation of AAIa formation by CYP inducers was investigated. We conclude that AAI demethylation is attributable mainly to Cyp1a1/2. The higher AAI-DNA adduct levels in HRN than WT mice were the result of the lack of hepatic AAI demethylation concomitant with a higher activity of cytosolic NAD(P)H:quinone oxidoreductase (Nqo1), which activates AAI. Mouse hepatic Cyp1a1/2 also activated AAI to DNA adducts under hypoxic conditions in vitro, but in renal microsomes, Por and Cyp3a are more important than Cyp1a for AAI-DNA adduct formation. We propose that AAI activation and detoxication in mice are dictated mainly by AAI binding affinity to Cyp1a1/2 or Nqo1, by their turnover, and by the balance between oxidation and reduction of AAI by Cyp1a.
Ingestion of aristolochic acid (AA) is associated with development of urothelial tumors linked with AA nephropathy and is implicated in the development of Balkan endemic nephropathy-associated urothelial tumors. We investigated the efficiency of human NAD(P)H:quinone oxidoreductase (NQO1) to activate aristolochic acid I (AAI) and used in silico docking, using soft-soft (flexible) docking procedure, to study the interactions of AAI with the active site of human NQO1. AAI binds to the active site of NQO1 indicating that the binding orientation allows for direct hydride transfer (i.e., two electron reductions) to the nitro group of AAI. NQO1 activated AAI, generating DNA adduct patterns reproducing those found in urothelial tissues from humans exposed to AA. Because reduced aromatic nitro-compounds are often further activated by sulfotransferases (SULTs) or N,O-acetlytransferases (NATs), their roles in AAI activation were investigated. Our results indicate that phase II reactions do not play a major role in AAI bioactivation; neither native enzymes present in human hepatic or renal cytosols nor human SULT1A1, -1A2, -1A3, -1E, or -2A nor NAT1 or NAT2 further enhanced DNA adduct formation by AAI. Instead under the in vitro conditions used, DNA adducts arise by enzymatic reduction of AAI through the formation of a cyclic hydroxamic acid (N-hydroxyaristolactam I) favored by the carboxy group in peri position to the nitro group without additional conjugation. These results emphasize the major importance of NQO1 in the metabolic activation of AAI and provide the first evidence that initial nitroreduction is the rate limiting step in AAI activation.
Introduction: Concentration of urinary cell-free DNA (ucfDNA) belongs to potential bladder cancer markers, but the reported results are inconsistent due to the use of various non-standardised methodologies. The aim of the study was to standardise the methodology for ucfDNA quantification as a potential non-invasive tumour biomarker. Material and Methods: In total, 66 patients and 34 controls were enrolled into the study. Volumes of each urine portion (V) were recorded and ucfDNA concentrations (c) were measured using real-time PCR. Total amounts (TA) of ucfDNA were calculated and compared between patients and controls. Diagnostic accuracy of the TA of ucfDNA was determined. Results: The calculation of TA of ucfDNA in the second urine portion was the most appropriate approach to ucfDNA quantification, as there was logarithmic dependence between the volume and the concentration of a urine portion (p = 0.0001). Using this methodology, we were able to discriminate between bladder cancer patients and subjects without bladder tumours (p = 0.0002) with area under the ROC curve of 0.725. Positive and negative predictive value of the test was 90 and 45%, respectively. Conclusion: Quantification of ucf DNA according to our modified method could provide a potential non-invasive biomarker for diagnosis of patients with bladder cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.