Quantum walks obey unitary dynamics: they form closed quantum systems. The system becomes open if the walk suffers from imperfections represented as missing links on the underlying basic graph structure, described by dynamical percolation. Openness of the system's dynamics creates decoherence, leading to strong mixing. We present a method to analytically solve the asymptotic dynamics of coined, percolated quantum walks for a general graph structure. For the case of a circle and a linear graph we derive the explicit form of the asymptotic states. We find that a rich variety of asymptotic evolutions occur: not only the fully mixed state, but other stationary states; stable periodic and quasiperiodic oscillations can emerge, depending on the coin operator, the initial state, and the topology of the underlying graph.
Abstract:We analyze the asymptotic dynamics of quantum systems resulting from large numbers of iterations of random unitary operations. Although, in general, these quantum operations cannot be diagonalized it is shown that their resulting asymptotic dynamics is described by a diagonalizable superoperator.We prove that this asymptotic dynamics takes place in a typically low dimensional attractor space which is independent of the probability distribution of the unitary operations applied. This vector space is spanned by all eigenvectors of the unitary operations involved which are associated with eigenvalues of unit modulus. Implications for possible asymptotic dynamics of iterated random unitary operations are presented and exemplified in an example involving random controlled-not operations acting on two qubits.
PACS
Quantum walks are a well-established model for the study of coherent transport phenomena and provide a universal platform in quantum information theory. Dynamically influencing the walker's evolution gives a high degree of flexibility for studying various applications. Here, we present timemultiplexed finite quantum walks of variable size, the preparation of non-localised input states and their dynamical evolution. As a further application, we implement a state transfer scheme for an arbitrary input state to two different output modes. The presented experiments rely on the full dynamical control of a time-multiplexed quantum walk, which includes adjustable coin operation as well as the possibility to flexibly configure the underlying graph structures.
The asymptotic dynamics of quantum Markov chains generated by the most general physically relevant quantum operations is investigated. It is shown that it is confined to an attractor space on which the resulting quantum Markov chain is diagonalizable. A construction procedure of a basis of this attractor space and its associated dual basis is presented. It applies whenever a strictly positive quantum state exists which is contracted or left invariant by the generating quantum operation. Moreover, algebraic relations between the attractor space and Kraus operators involved in the definition of a quantum Markov chain are derived. This construction is not only expected to offer significant computational advantages in cases in which the dimension of the Hilbert space is large and the dimension of the attractor space is small but it also sheds new light onto the relation between the asymptotic dynamics of quantum Markov chains and fixed points of their generating quantum operations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.