ESCRT-I is required for the sorting of integral membrane proteins to the lysosome, or vacuole in yeast, for cytokinesis in animal cells, and for the budding of HIV-1 from human macrophages and T lymphocytes. ESCRT-I is a heterotetramer of Vps23, Vps28, Vps37, and Mvb12. The crystal structures of the core complex and the ubiquitin E2 variant and Vps28 C-terminal domains have been determined, but internal flexibility has prevented crystallization of intact ESCRT-I. Here we have characterized the structure of ESCRT-I in solution by simultaneous structural refinement against small-angle X-ray scattering and double electron–electron resonance spectroscopy of spin-labeled complexes. An ensemble of at least six structures, comprising an equally populated mixture of closed and open conformations, was necessary to fit all of the data. This structural ensemble was cross-validated against single-molecule FRET spectroscopy, which suggested the presence of a continuum of open states. ESCRT-I in solution thus appears to consist of an approximately 50% population of one or a few related closed conformations, with the other 50% populating a continuum of open conformations. These conformations provide reference points for the structural pathway by which ESCRT-I induces membrane buds.
14-3-3 proteins are abundant binding proteins involved in many biologically important processes. 14-3-3 proteins bind to other proteins in a phosphorylation-dependent manner and function as scaffold molecules modulating the activity of their binding partners. In this work, we studied the conformational changes of 14-3-3 C-terminal stretch, a region implicated in playing a role in the regulation of 14-3-3. Time-resolved fluorescence and molecular dynamics were used to investigate structural changes of the C-terminal stretch induced by phosphopeptide binding and phosphorylation at Thr 232 , a casein kinase I phosphorylation site located within this region. A tryptophan residue placed at position 242 was exploited as an intrinsic fluorescence probe of the Cterminal stretch dynamics. Other tryptophan residues were mutated to phenylalanine. Time-resolved fluorescence measurements revealed that phosphopeptide binding changes the conformation and increases the flexibility of 14-3-3 C-terminal stretch, demonstrating that this region is directly involved in ligand binding. Phosphorylation of 14-3-3 at Thr 232 resulted in inhibition of phosphopeptide binding and suppression of 14-3-3-mediated enhancement of serotonin N-acetyltransferase activity. Time-resolved fluorescence of Trp 242 also revealed that phosphorylation at Thr 232 induces significant changes of the C-terminal stretch conformation. In addition, molecular dynamic simulations suggest that phosphorylation at Thr 232 induces a more extended conformation of 14-3-3 C-terminal stretch and changes its interaction with the rest of the 14-3-3 molecule. These results indicate that the conformation of the C-terminal stretch plays an important role in the regulation of 14-3-3 binding properties.
The 14-3-3 proteins are a family of regulatory signaling molecules that interact with other proteins in a phosphorylation-dependent manner. 14-3-3 proteins are thought to play a direct role in the regulation of subcellular localization of FoxO forkhead transcription factors. It has been suggested that the interaction with the 14-3-3 protein affects FoxO binding to the target DNA and interferes with the function of nuclear localization sequence (NLS). Masking or obscuring of NLS could inhibit interaction between FoxO factors and nuclear importing machinery and thus shift the equilibrium of FoxO localization toward the cytoplasm. According to our best knowledge, there is no experimental evidence showing a direct interaction between the 14-3-3 protein and NLS of FoxO. Therefore, the main goal of this work was to investigate whether the phosphorylation by protein kinase B, the 14-3-3 protein, and DNA binding affect the structure of FoxO4 NLS. We have used site-directed labeling of FoxO4 NLS with the extrinsic fluorophore 1,5-IAEDANS in conjunction with steady-state and time-resolved fluorescence spectroscopy to study conformational changes of FoxO4 NLS in vitro. Our data show that the 14-3-3 protein binding significantly changes the environment around AEDANS-labeled NLS and reduces its flexibility. On the other hand, the phosphorylation itself and the binding of double-stranded DNA have a small effect on the structure of this region. Our results also suggest that the DNA-binding domain of FoxO4 remains relatively mobile while bound to the 14-3-3 protein.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.