A specific humoral response to bacteriophages may follow phage application for medical purposes, and it may further determine the success or failure of the approach itself. We present a long-term study of antibody induction in mice by T4 phage applied per os: 100 days of phage treatment followed by 112 days without the phage, and subsequent second application of phage up to day 240. Serum and gut antibodies (IgM, IgG, secretory IgA) were analyzed in relation to microbiological status of the animals. T4 phage applied orally induced anti-phage antibodies when the exposure was long enough (IgG day 36, IgA day 79); the effect was related to high dosage. Termination of phage treatment resulted in a decrease of IgA again to insignificant levels. Second administration of phage induces secretory IgA sooner than that induced by the first administrations. Increased IgA level antagonized gut transit of active phage. Phage resistant E. coli dominated gut flora very late, on day 92. Thus, the immunological response emerges as a major factor determining phage survival in the gut. Phage proteins Hoc and gp12 were identified as highly immunogenic. A low response to exemplary foreign antigens (from Ebola virus) presented on Hoc was observed, which suggests that phage platforms can be used in oral vaccine design.
Bacteriophages are able to affect the human immune system. Phage-specific antibodies are considered as major factors shaping phage pharmacokinetics and bioavailability. So far, general knowledge of phage antigenicity nevertheless remains extremely limited. Here we present comparative studies of immunogenicity in two therapeutic bacteriophages, A3R and 676Z, active against Staphylococcus aureus, routinely applied in patients at the Phage Therapy Unit, Poland. Comparison of the overall ability of whole phages to induce specific antibodies in a murine model revealed typical kinetics of IgM and IgG induction by these two phages. In further studies we identified the location of four phage proteins in the virions, with the focus on the external capsid head (Mcp) or tail sheath (TmpH) or an unidentified precise location (ORF059 and ORF096), and we confirmed their role as structural proteins of these viruses. Next, we compared the immune response elicited by these proteins after phage administration in mice. Similar to that in T4 phage, Mcp was the major element of the capsid that induced specific antibodies. Studies of protein-specific sera revealed that antibodies specific to ORF096 were able to neutralize antibacterial activity of the phages. In humans (population level), none of the studied proteins plays a particular role in the induction of specific antibodies; thus none potentially affects in a particular way the effectiveness of A3R and 676Z. Also in patients subjected to phage therapy, we did not observe increased specific immune responses to the investigated proteins.
The Lactobacillus casei strain, LOCK 0919, is intended for the dietary management of food allergies and atopic dermatitis (LATOPIC® BIOMED). The use of a probiotic to modulate immune responses is an interesting strategy for solving imbalance problems of gut microflora that may lead to various disorders. However, the exact bacterial signaling mechanisms underlying such modulations are still far from being understood. Here, we investigated variations in the chemical compositions and immunomodulatory properties of the polysaccharides (PS), L919/A and L919/B, which are produced by L. casei LOCK 0919. By virtue of their chemical features, such PS can modulate the immune responses to third-party antigens. Our results revealed that L919/A and L919/B could both modulate the immune response to Lactobacillus planatarum WCFS1, but only L919/B could alter the response of THP-1 cells (in terms of tumor necrosis factor alpha production) to L. planatarum WCFS1 and Escherichia coli Nissle 1917. The comprehensive immunochemical characterization is crucial for the understanding of the biological function as well as of the bacteria–host and bacteria–bacteria cross-talk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.