A rapid development and growing popularity of additive manufacturing technology leads to new challenging tasks allowing not only a reliable monitoring of the progress of the 3D printing process but also the quality of the printed objects. The automatic objective assessment of the surface quality of the 3D printed objects proposed in the paper, which is based on the analysis of depth maps, allows for determining the quality of surfaces during printing for the devices equipped with the built-in 3D scanners. In the case of detected low quality, some corrections can be made or the printing process may be aborted to save the filament, time and energy. The application of the entropy analysis of the 3D scans allows evaluating the surface regularity independently on the color of the filament in contrast to many other possible methods based on the analysis of visible light images. The results obtained using the proposed approach are encouraging and further combination of the proposed approach with camera-based methods might be possible as well.
A reliable automatic visual quality assessment of 3D-printed surfaces is one of the key issues related to computer and machine vision in the Industry 4.0 era. The colour-independent method based on image entropy proposed in the paper makes it possible to detect and identify some typical problems visible on the surfaces of objects obtained by additive manufacturing. Depending on the quality factor, some of such 3D printing failures may be corrected during the printing process or the operation can be aborted to save time and filament. Since the surface quality of 3D-printed objects may be related to some mechanical or physical properties of obtained objects, its fast and reliable evaluation may also be helpful during the quality monitoring procedures. The method presented in the paper utilizes the assumption of the increase of image entropy for irregularly distorted 3D-printed surfaces. Nevertheless, because of the local nature of distortions, the direct application of the global entropy does not lead to satisfactory results of automatic surface quality assessment. Therefore, the extended method, based on the combination of the local image entropy and its variance with additional colour adjustment, is proposed in the paper, leading to the proper classification of 78 samples used during the experimental verification of the proposed approach.
Quality assessment of the 3D printed surfaces is one of the crucial issues related to fast prototyping and manufacturing of individual parts and objects using the fused deposition modeling, especially in small series production. As some corrections of minor defects may be conducted during the printing process or just after the manufacturing, an automatic quality assessment of object’s surfaces is highly demanded, preferably well correlated with subjective quality perception, considering aesthetic aspects. On the other hand, the presence of some greater and more dense distortions may indicate a reduced mechanical strength. In such cases, the manufacturing process should be interrupted to save time, energy, and the filament. This paper focuses on the possibility of using some general-purpose full-reference image quality assessment methods for the quality assessment of the 3D printed surfaces. As the direct application of an individual (elementary) metric does not provide high correlation with the subjective perception of surface quality, some modifications of similarity-based methods have been proposed utilizing the calculation of the average mutual similarity, making it possible to use full-reference metrics without the perfect quality reference images, as well as the combination of individual metrics, leading to a significant increase of correlation with subjective scores calculated for a specially prepared dataset.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.