Metronidazole and other 5-nitroimidazoles (5-NI) are among the most effective antimicrobials available against many important anaerobic pathogens, but evolving resistance is threatening their long-term clinical utility. The common 5-NIs were developed decades ago, yet little 5-NI drug development has since taken place, leaving the true potential of this important drug class unexplored. Here we report on a unique approach to the modular synthesis of diversified 5-NIs for broad exploration of their antimicrobial potential. Many of the more than 650 synthesized compounds, carrying structurally diverse functional groups, have vastly improved activity against a range of microbes, including the pathogenic protozoa Giardia lamblia and Trichomonas vaginalis, and the bacterial pathogens Helicobacter pylori, Clostridium difficile, and Bacteroides fragilis. Furthermore, they can overcome different forms of drug resistance, and are active and nontoxic in animal infection models. These findings provide impetus to the development of structurally diverse, next-generation 5-NI drugs as agents in the antimicrobial armamentarium, thus ensuring their future viability as primary therapeutic agents against many clinically important infections.infectious diseases | antibiotics | medicinal chemistry
In this three-component reaction, alkynes undergo a copper(I)-catalyzed cycloaddition with sodium azide and formaldehyde to yield 2-hydroxymethyl-2 H-1,2,3-triazoles, which are useful intermediates that can be readily converted to polyfunctional molecules. The hydroxymethyl group can also be removed, providing convenient access to N H-1,2,3-triazoles. The reaction is experimentally simple and readily scalable.
Infections with the diarrheagenic pathogen, Giardia lamblia, are commonly treated with the 5-nitroimidazole (5-NI) metronidazole (Mz), and yet treatment failures and Mz resistance occur. Using a panel of new 2-ethenyl and 2-ethanyl 5-NI derivatives, we found that compounds with a saturated bridge between the 5-NI core and a pendant ring system exhibited only modestly increased antigiardial activity and could not overcome Mz resistance. By contrast, olefins with a conjugated bridge connecting the core and a substituted phenyl or heterocyclic ring showed greatly increased antigiardial activity without toxicity, and several overcame Mz resistance and were more effective than Mz in a murine giardiasis model. Determination of the half-wave potential of the initial oneelectron transfer by cyclic voltammetry revealed that easier redox activation correlated with greater antigiardial activity and capacity to overcome Mz resistance. These studies show the potential of combining systematic synthetic approaches with biological and electrochemical evaluations in developing improved 5-NI drugs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.