We perform a comparative study of applicability of the Multifractal Detrended Fluctuation Analysis (MFDFA) and the Wavelet Transform Modulus Maxima (WTMM) method in proper detecting of mono-and multifractal character of data. We quantify the performance of both methods by using different sorts of artificial signals generated according to a few well-known exactly soluble mathematical models: monofractal fractional Brownian motion, bifractal Lévy flights, and different sorts of multifractal binomial cascades. Our results show that in majority of situations in which one does not know a priori the fractal properties of a process, choosing MFDFA should be recommended. In particular, WTMM gives biased outcomes for the fractional Brownian motion with different values of Hurst exponent, indicating spurious multifractality. In some cases WTMM can also give different results if one applies different wavelets. We do not exclude using WTMM in real data analysis, but it occurs that while one may apply MFDFA in a more automatic fashion, WTMM has to be applied with care. In the second part of our work, we perform an analogous analysis on empirical data coming from the American and from the German stock market. For this data both methods detect rich multifractality in terms of broad f (α), but MFDFA suggests that this multifractality is poorer than in the case of WTMM.
The detrended cross-correlation coefficient ρDCCA has recently been proposed to quantify the strength of cross-correlations on different temporal scales in bivariate, non-stationary time series. It is based on the detrended cross-correlation and detrended fluctuation analyses (DCCA and DFA, respectively) and can be viewed as an analogue of the Pearson coefficient in the case of the fluctuation analysis. The coefficient ρDCCA works well in many practical situations but by construction its applicability is limited to detection of whether two signals are generally cross-correlated, without possibility to obtain information on the amplitude of fluctuations that are responsible for those cross-correlations. In order to introduce some related flexibility, here we propose an extension of ρDCCA that exploits the multifractal versions of DFA and DCCA: MFDFA and MFCCA, respectively. The resulting new coefficient ρq not only is able to quantify the strength of correlations, but also it allows one to identify the range of detrended fluctuation amplitudes that are correlated in two signals under study. We show how the coefficient ρq works in practical situations by applying it to stochastic time series representing processes with long memory: autoregressive and multiplicative ones. Such processes are often used to model signals recorded from complex systems and complex physical phenomena like turbulence, so we are convinced that this new measure can successfully be applied in time series analysis. In particular, we present an example of such application to highly complex empirical data from financial markets. The present formulation can straightforwardly be extended to multivariate data in terms of the q-dependent counterpart of the correlation matrices and then to the network representation.
We propose an algorithm, multifractal cross-correlation analysis (MFCCA), which constitutes a consistent extension of the detrended cross-correlation analysis and is able to properly identify and quantify subtle characteristics of multifractal cross-correlations between two time series. Our motivation for introducing this algorithm is that the already existing methods, like multifractal extension, have at best serious limitations for most of the signals describing complex natural processes and often indicate multifractal cross-correlations when there are none. The principal component of the present extension is proper incorporation of the sign of fluctuations to their generalized moments. Furthermore, we present a broad analysis of the model fractal stochastic processes as well as of the real-world signals and show that MFCCA is a robust and selective tool at the same time and therefore allows for a reliable quantification of the cross-correlative structure of analyzed processes. In particular, it allows one to identify the boundaries of the multifractal scaling and to analyze a relation between the generalized Hurst exponent and the multifractal scaling parameter λ(q). This relation provides information about the character of potential multifractality in cross-correlations and thus enables a deeper insight into dynamics of the analyzed processes than allowed by any other related method available so far. By using examples of time series from the stock market, we show that financial fluctuations typically cross-correlate multifractally only for relatively large fluctuations, whereas small fluctuations remain mutually independent even at maximum of such cross-correlations. Finally, we indicate possible utility of MFCCA to study effects of the time-lagged cross-correlations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.