This study shows the results of air monitoring in high- and low-occupancy rooms using two combinations of sensors, AeroTrak8220(TSI)/OPC-N3 (AlphaSense, Great Notley, UK) and OPC-N3/PMS5003 (Plantower, Beijing, China), respectively. The tests were conducted in a flat in Warsaw during the restrictions imposed due to the COVID-19 lockdown. The results showed that OPC-N3 underestimates the PN (particle number concentration) by about 2–3 times compared to the AeroTrak8220. Subsequently, the OPC-N3 was compared with another low-cost sensor, the PMS5003. Both devices showed similar efficiency in PN estimation, whereas PM (particulate matter) concentration estimation differed significantly. Moreover, the relationship among the PM1–PM2.5–PM10 readings obtained with the PMS5003 appeared improbably linear regarding the natural indoor conditions. The correlation of PM concentrations obtained with the PMS5003 suggests an oversimplified calculation method of PM. The studies also demonstrated that PM1, PM2.5, and PM10 concentrations in the high- to low-occupancy rooms were about 3, 2, and 1.5 times, respectively. On the other hand, the use of an air purifier considerably reduced the PM concentrations to similar levels in both rooms. All the sensors showed that frying and toast-making were the major sources of particulate matter, about 10 times higher compared to average levels. Considerably lower particle levels were measured in the low-occupancy room.
The paper describes comparison of laser generation of concentrated and SELG glasses developed at the General Physics Institute of Russian Academy of Sciences in Moscow and most recent EAT14 glass worked out by the CLaser Photonics Company in Shanghai. The laser generation was carried out using 976-nm pump wavelength in cw and quasi-cw regimes. Comparison of efficiencies and thresholds as well as of dissipative losses was made with a view to choose the best glass for “eye-safe” microchip laser range-finder. The generated wavelengths by each sample were measured.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.