The purpose of these studies was to evaluate the effect of selected vanadium and magnesium doses on certain haematological and biochemical blood parameters in rats. Outbred 2-month-old, albino male Wistar rats received for a period of 6 weeks, as a sole drinking liquid, the following water solutions: group II, sodium metavanadate (SMV) at a concentration of 0.125 mg V/mL; group III, magnesium sulphate (MS) at a concentration of 0.06 mg Mg/mL; and group IV, SMV-MS solution at the same concentrations. The control group received at this time deionized water to drink. It was calculated that group II ingested with drinking water about 10.7 mg V/kg b. w./24 h, group III 6 mg Mg/kg b. w./24 h, and group IV about 9 mg V and 4.5 mg Mg/kg b. w./24 h. The exposure to vanadium alone (group II) led to a statistically significant decrease in body weight gain, food and fluid intakes. Moreover, in the same group of rats a statistically significant decrease in the RBC count, Hb concentration, MCV, and MCH values was demonstrated. Additionally, a statistically significant decrease in the plasma L-ascorbic acid concentration and a significant increase in MDA concentration in blood in this group were found. Instead, after the administration of magnesium alone (group III), a statistically significant decrease in the fluid intake and in the L-ascorbic acid concentration in plasma was noted. Furthermore, in the same group of rats a statistically significant increase in Hb level and in the plasma magnesium concentration was demonstrated. Two-way analysis of variance (ANOVA) did not reveal the interactions between V and Mg.
Selected biochemical parameters were studied in the blood of outbred, male Wistar rats which daily received to drink deionized water (Group I, control) or solutions of: sodium metavanadate (SMV; 0.100 mg V/mL)-Group II; chromium chloride (CC; 0.004 mg Cr/mL)-Group III; and SMV-CC (0.100 mg V and 0.004 mg Cr/mL)-Group IV for a 12-week period. The diet and fluid intake, body weight gain, and food efficiency ratio (FER) diminished significantly in the rats of Groups II and IV, compared with Groups I and III. The plasma total antioxidant status (TAS) as well as the MDA and the L: -ascorbic acid level in the erythrocytes (RBCs) remained unchanged in all the groups, whereas the plasma L: -ascorbic acid concentration decreased markedly in Group II, compared with Group III. The activities of Cu,Zn-superoxide dismutase (Cu,Zn-SOD), catalase (CAT), cellular glutathione peroxidase (cGSH-Px), and glutathione reductase (GR) in RBCs remained unaltered in all the treated rats. However, the activity of glutathione S-transferase (GST) and the content of reduced glutathione (GSH) in RBCs decreased and increased, respectively, in Groups II, III, and IV, compared with Group I. A vanadium-chromium interaction which affected the GST activity was also found. To summarize, SMV and CC administered separately or in combination in drinking water for 12 weeks did not alter either lipid peroxidation (LPO) or the activities of Cu,Zn-SOD, CAT, cGSH-Px, and GR, which allows a conclusion that both metals in the doses ingested did not reveal their pro-oxidant potential on RBCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.