Integrity constraints (ICs) provide a valuable tool for expressing and enforcing application semantics. However, formulating constraints manually requires domain expertise, is prone to human errors, and may be excessively time consuming, especially on large datasets. Hence, proposals for automatic discovery have been made for some classes of ICs, such as functional dependencies (FDs), and recently, order dependencies (ODs). ODs properly subsume FDs, as they can additionally express business rules involving order; e.g., an employee never has a higher salary while paying lower taxes compared with another employee.We address the limitations of prior work on OD discovery which has factorial complexity in the number of attributes, is incomplete (i.e., it does not discover valid ODs that cannot be inferred from the ones found) and is not concise (i.e., it can result in "redundant" discovery and overly large discovery sets). We improve significantly on complexity, offer completeness, and define a compact canonical form. This is based on a novel polynomial mapping to a canonical form for ODs, and a sound and complete set of axioms (inference rules) for canonical ODs. This allows us to develop an efficient set-containment, lattice-driven OD discovery algorithm that uses the inference rules to prune the search space. Our algorithm has exponential worst-case time complexity, O(2 |R| ), in the number of attributes and linear complexity in the number of tuples. We prove that it produces a complete, minimal set of ODs (i.e., minimal with regards to the canonical representation). Finally, using real and synthetic datasets, we experimentally show orders-of-magnitude performance improvements over the current state-of-the-art algorithm and demonstrate effectiveness of our techniques.
Dependencies have played a significant role in database design for many years. They have also been shown to be useful in query optimization. In this paper, we discuss dependencies between lexicographically ordered sets of tuples. We introduce formally the concept of order dependency and present a set of axioms (inference rules) for them. We show how query rewrites based on these axioms can be used for query optimization. We present several interesting theorems that can be derived using the inference rules. We prove that functional dependencies are subsumed by order dependencies and that our set of axioms for order dependencies is sound and complete.
Abstract-In declarative data cleaning, data semantics are encoded as constraints and errors arise when the data violates the constraints. Various forms of statistical and logical inference can be used to reason about and repair inconsistencies (errors) in data. Recently, unified approaches that repair both errors in data and errors in semantics (the constraints) have been proposed. However, both data-only approaches and unified approaches are by and large static in that they apply cleaning to a single snapshot of the data and constraints. We introduce a continuous data cleaning framework that can be applied to dynamic data and constraint environments. Our approach permits both the data and its semantics to evolve and suggests repairs based on the accumulated evidence to date. Importantly, our approach uses not only the data and constraints as evidence, but also considers the past repairs chosen and applied by a user (user repair preferences). We introduce a repair classifier that predicts the type of repair needed to resolve an inconsistency, and that learns from past user repair preferences to recommend more accurate repairs in the future. Our evaluation shows that our techniques achieve high prediction accuracy and generate high quality repairs. Of independent interest, our work makes use of a set of data statistics that are shown to be sensitive to predicting particular repair types.
Quantitative data cleaning relies on the use of statistical methods to identify and repair data quality problems while logical data cleaning tackles the same problems using various forms of logical reasoning over declarative dependencies. Each of these approaches has its strengths: the logical approach is able to capture subtle data quality problems using sophisticated dependencies, while the quantitative approach excels at ensuring that the repaired data has desired statistical properties. We propose a novel framework within which these two approaches can be used synergistically to combine their respective strengths. We instantiate our framework using (i) metric functional dependencies, a type of dependency that generalizes functional dependencies (FDs) to identify inconsistencies in domains where only large differences in metric data are considered to be a data quality problem, and (ii) repairs that modify the inconsistent data so as to minimize statistical distortion, measured using the Earth Mover's Distance. We show that the problem of computing a statistical distortion minimal repair is NP-hard. Given this complexity, we present an efficient algorithm for finding a minimal repair that has a small statistical distortion using EMD computation over semantically related attributes. To identify semantically related attributes, we present a sound and complete axiomatization and an efficient algorithm for testing implication of metric FDs. While the complexity of inference for some other FD extensions is co-NP complete, we show that the inference problem for metric FDs remains linear, as in traditional FDs. We prove that every instance that can be generated by our repair algorithm is set-minimal (with no unnecessary changes). Our experimental evaluation demonstrates that our techniques obtain a considerably lower statistical distortion than existing repair techniques, while achieving similar levels of efficiency.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.