Methiozolin is a new herbicide for control of annual bluegrass (Poa annua L.) in several warm and cool season turfgrasses with an unknown mechanism of action (MOA). In the literature, methiozolin was proposed to be a pigment inhibitor via inhibition of tyrosine aminotransferases (TATs) or a cellulose biosynthesis inhibitor (CBI). Here, exploratory research was conducted to characterize the herbicide symptomology and MOA of methiozolin. Arabidopsis (Arabidopsis thaliana L.) and P. annua exhibited a similar level of susceptibility to methiozolin and arrestment of meristematic growth was the most characteristic symptomology. For example, methiozolin inhibited Arabidopsis root growth (GR50 8 nM), shoot emergence (GR80 ~50 nM), and at rates greater than 500 nM apical meristem growth was completely arrested. We concluded that methiozolin was neither a TAT nor a CBI inhibitor. Methiozolin had a minor effect on chlorophyll and alpha-tocopherol content in treated seedlings (< 500 nM) and supplements in the proposed TAT pathway could not lessen phytotoxicity. Examination of microscopy root images revealed methiozolin treated (100 nM) and untreated seedlings had similar root cell lengths. Thus, methiozolin inhibits cell proliferation and not elongation from meristematic tissue. Subsequently, we suspected methiozolin was an inhibitor of the mevalonic acid (MVA) pathway because its herbicidal symptomologies were nearly indistinguishable from those caused by lovastatin. However, methiozolin did not inhibit phytosterol production and MVA pathway metabolites did not rescue treated seedlings. Further experiments showed that methiozolin produced a very similar physiological profile across a number of assays as cinmethylin, a known inhibitor of fatty acid synthesis through inhibition of thioesterases (FATs). Experiments with Lemna showed that methiozolin also reduced fatty acid content in Lemna with a profile similar, but not identical, to cinmethylin. However, there was no difference in fatty acid content between treated (1 µM) and untreated Arabidopsis seedlings. Methiozolin also bound to both Arabidopsis and Lemna FATs in vitro. Modeling suggested that methiozolin and cinmethylin have comparable and overlapping binding sites to FAT. While there was a discrepancy in the effect of methiozolin on fatty acid content between Lemna and Arabidopsis, the overall evidence indicates that methiozolin is a FAT inhibitor and acts in a similar manner as cinmethylin.
Oak barrels have been used by humans for thousands of years to store and transport valuable materials. Early settlers of the United States in Kentucky began charring the interior of new white oak barrels prior to aging distillate to create the distinctively flavored spirit we know as bourbon whiskey. Despite the unique flavor and cultural significance of “America’s Spirit”, little is known about the wood-distillate interaction that shapes bourbon whiskey. Here, we employed an inverse method to measure the loss of specific wood polysaccharides in the oak cask during aging for up to ten years. We found that the structural cell wall wood biopolymer, cellulose, was partially decrystallized by the charring process. This pyrolytic fracturing and subsequent exposure to the distillate was accompanied by a steady loss of sugars from the cellulose and hemicellulose fractions of the oak cask. Distinct layers of structural degradation and product release from within the barrel stave are formed over time as the distillate expands into and contracts from the barrel staves. This complex, wood-sugar release process is likely associated with the time-dependent generation of the unique palate of bourbon whiskey.
Oak barrels serve two purposes in the production of distilled spirits: storage containers and reaction vessels. It is the latter function which bestows barrel aged spirits with their unique and highly sought after flavour profiles. However, achieving consistent flavour profiles between barrels is notoriously difficult as no two barrels are comprised of the same source of oak. Source variation is due to a range of factors, beginning with the genetic and topographical background of the oak tree from which the barrel staves originate, the spatial region of the tree from which the stave was taken and continuing through each step of the barrel production process. In this review, we detail each source of variation and highlight how this variation affects the reactants present in the barrel staves. The effect of pyrolysis on biomass is explored and how this knowledge relates to barrels that undergo the practices of toasting and charring is discussed. We also detail the significance of variation in the availability of reactants during the maturation process. The goal of writing this review is to identify areas of needed research, stimulate research and encourage investigation into the possibility of creating barrels with more consistent properties. © 2021 The Authors. Journal of the Institute of Brewing published by John Wiley & Sons Ltd on behalf of The Institute of Brewing & Distilling.
Whiskey production originated in Scotland in the 15th century and was based on malted barley. As Scotch-Irish settlers came into the Ohio river valley, they began fermenting and distilling the primary grain of North America, maize. These earlier settlers started a heritage; they created American Whiskey. The bourbon industry in Kentucky had tremendous growth in the last 20 years, and currently, distilleries have a broad increase in product innovation, new raw materials, improved sustainability, efficient processes, and product diversification. Our study presents a new lab-scale method for new-make bourbon whiskey production. It was developed to mimic distilleries’ processes; therefore, results can be extrapolated and adopted by commercial distilleries. The method focused on reproducibility with consistency from batch to batch when handled by an operator or small crew in a university lab. The method consisted of a first cooking step to make a “mash”, a fermentation phase of 96 h, a first distillation accomplished with a copper pot still to obtain the “low wines” and a second distillation carried out with an air still to collect the “hearts”. The method produced a final distillate of 500–700 mL for further sensory analysis and tasting. This lab-scale method showed consistency between samples in the different parameters quantified and will be also used to train students in fermentation and distillation studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.