SUMMARY
Circuit function in the CNS relies on the balanced interplay of excitatory and inhibitory synaptic signaling. How neuronal activity influences synaptic differentiation to maintain such balance remains unclear. In the mouse spinal cord, a population of GABAergic interneurons, GABApre, forms synapses with the terminals of proprioceptive sensory neurons and controls information transfer at sensory-motor connections through presynaptic inhibition. We show that reducing sensory glutamate release results in decreased expression of GABA-synthesizing enzymes GAD65 and GAD67 in GABApre terminals and decreased presynaptic inhibition. Glutamate directs GAD67 expression via the metabotropic glutamate receptor mGluR1ß on GABApre terminals and regulates GAD65 expression via autocrine influence on sensory terminal BDNF. We demonstrate that dual retrograde signals from sensory terminals operate hierarchically to direct the molecular differentiation of GABApre terminals and the efficacy of presynaptic inhibition. These retrograde signals comprise a feedback mechanism by which excitatory sensory activity drives GABAergic inhibition to maintain circuit homeostasis.
A remarkable molecular and functional heterogeneity of the primary sensory neurons and dorsal horn interneurons transmits pain- and or itch-relevant information, but the molecular signature of the projection neurons that convey the messages to the brain is unclear. Here, using retro-TRAP (translating ribosome affinity purification) and RNA sequencing, we reveal extensive molecular diversity of spino- and trigeminoparabrachial projection neurons. Among the many genes identified, we highlight distinct subsets of Cck+-, Nptx2+-, Nmb+-, and Crh+-expressing projection neurons. By combining in situ hybridization of retrogradely labeled neurons with Fos-based assays, we also demonstrate significant functional heterogeneity, including both convergence and segregation of pain- and itch-provoking inputs into molecularly diverse subsets of NK1R- and non–NK1R-expressing projection neurons.
SUMMARYSpinal interneurons are critical modulators of motor circuit function. In the dorsal spinal cord, a set of interneurons called GABApre presynaptically inhibits proprioceptive sensory afferent terminals, thus negatively regulating sensory-motor signaling. Although deficits in presynaptic inhibition have been inferred in human motor diseases, including dystonia, it remains unclear whether GABApre circuit components are altered in these conditions. Here, we use developmental timing to show that GABApre neurons are a late Ptf1a-expressing subclass and localize to the intermediate spinal cord. Using a microarray screen to identify genes expressed in this intermediate population, we find the kelch-like family member Klhl14, implicated in dystonia through its direct binding with torsion-dystonia-related protein Tor1a. Furthermore, in Tor1a mutant mice in which Klhl14 and Tor1a binding is disrupted, formation of GABApre sensory afferent synapses is impaired. Our findings suggest a potential contribution of GABApre neurons to the deficits in presynaptic inhibition observed in dystonia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.