Background: Lung, kidney and small intestine are involved in fetal volume regulation and amniotic fluid secretion and play a pivotal role in the transition from intrauterine to extrauterine life. Objective: This study was performed to determine the ontogeny of mineralocorticoid receptors (MR) and glucocorticoid receptors (GR), and of MR- and GR-regulated genes and proteins, serum and glucocorticoid-induced kinase (Sgk-1), epithelial sodium channel (ENaCα), and Na,K-ATPase α1. Methods: Lung, renal cortex and medulla, and small intestine were collected from fetuses at 80, 100, 120, 130 and 145 days’ gestation and from day 1 and 7 neonatal lambs. Real-time PCR was performed to determine mRNA concentration for MR, GR, the 11β-hydroxysteroid dehydrogenases (11β-HSD1 and 2), Sgk-1, ENaCα, and Na,K-ATPase α1. Protein expression of ENaCα and Na,K-ATPase α1 in whole cell and membrane fractions was determined by immunoblotting. Results: Expression of corticosteroid-induced genes in renal cortex increases at term; in small intestine the induction occurs postnatally. In contrast, in lung expression of MR and GR mRNAs were greater at 100 days to term than postnatally and 11β-HSD1 peaked at 145 days; the corticosteroid-induced genes also increased prenatally: Sgk-1 and ENaCα increased by 120 days, peaking at 145 days, and Na,K-ATPase α1 was greatest at 130 days. Conclusions: The expression of high levels of MR and 11β-HSD1 in preterm fetal lung suggest low endogenous fetal cortisol may exert actions at the high affinity MR in vivo, leading to increases in expression of sodium channels important in the regulation of lung liquid secretion and reabsorption.
Transition of the epithelium of the fetal lung from fluid secretion to fluid reabsorption requires changes in the expression of ion channels. Corticosteroids regulate expression of several of these channels, including the epithelium sodium channel (ENaC) subunits and aquaporins (AQP). We investigated the ontogenetic changes in these ion channels in the ovine fetal lung during the last half of gestation, a time of increasing adrenal maturation. Expression of the mRNAs for the chloride channels, cystic fibrosis transmembrane conductance regulator (CFTR), and chloride channel 2 (CLCN2) decreased with age. Expression of mRNAs for AQP1, AQP5, and for subunits of ENaC (alpha, beta, gamma) increased with age. In the fetal sheep the expression of ENaCbeta mRNA was dramatically higher than the expression of ENaCalpha or ENaCgamma, but expression of ENaCbeta protein decreased with maturation, although the ratio of the mature (112 kDa) to immature (102 kDa) ENaCbeta protein increased with age, particularly in the membrane fraction. In contrast, ENaCalpha mRNA and protein both increase with maturation, and the mature form of ENaCalpha (68 kDa) predominates at all ages. A modest increase in fetal cortisol, within the range expected to occur naturally in late gestation but prior to active labor, increased ENaCalpha mRNA but not ENaCbeta, ENaCgamma, or AQP mRNAs. We conclude that in the ovine fetal lung, appearance of functional sodium channels is associated with induction of ENACalpha and ENaCgamma, and that ENaCalpha expression may be induced by even small, preterm increases in fetal cortisol.
In the human and ovine fetus the presence of 11β-hydroxysteroid dehydrogenase 1 allows cortisol and other corticosteroids to act at mineralocorticoid receptors in lung and brain. To test the physiologic role of mineralocorticoid receptors (MR) in the late gestation fetus, fetal lambs were infused with a specific MR antagonist for 12 hours. Infusion of the MR antagonist significantly increased plasma ACTH and cortisol concentrations. Infusion of the MR antagonist also significantly increased fetal PCO2 and hematocrit, and decreased fetal pH, but did not alter fetal heart rate or blood pressure. Infusion of the MR antagonist altered the ratio of Na+ to K+ in lung fluid, but did not alter the rate of production of lung liquid or the expression of the epithelial sodium channel α or of the Na,K ATPaseα1 in lung. These results suggest that corticosteroids act at MR to regulate ACTH and blood volume and modulate lung fluid composition in the fetus, but basal levels of corticosteroids do not alter lung liquid production rate through effects on MR.
This study was designed to determine the effects of corticosteroids at MR in the late‐gestation fetal lung. Since both the mineralocorticoid receptor (MR) and the glucocorticoid receptor (GR) are expressed at relatively high levels in the fetal lung, endogenous corticosteroids may act at MR as well as GR in the preterm fetal lung. The GR agonist, betamethasone, the MR agonist, aldosterone, or both were infused intravenously for 48 h in ovine fetuses of approximately 130 days gestation. Effects on airway pressures during stepwise inflation of the in situ lung, expression of ENaC alpha (SCNN1A), ENaC beta (SCNN1B), and Na,K ATPase (ATP1A1), and elastin and collagen content were determined after the infusions. We found that aldosterone significantly reduced the airway pressure measured during the initial step in inflation of the lung, although aldosterone had no overall effect on lung compliance, nor did aldosterone induce expression of ENaCα, ENaCβ or Na,K ATPaseα1. Betamethasone significantly increased expression of the epithelial sodium channel (ENaC) subunit mRNAs, and collagen and elastin content in the lungs, although this dose of betamethasone also had no effect on lung compliance. There was no synergy between effects of the MR and GR agonists. Transcriptomic analysis suggested that although aldosterone did not alter genes in pathways related to epithelial sodium transport, aldosterone did alter genes in pathways involved in cell proliferation in the lungs. The results are consistent with corticosteroid‐induced fluid reabsorption at birth through GR rather than MR, but suggest that MR facilitates lung maturation, and may contribute to inflation with the first breaths via mechanisms distinct from known aldosterone effects in other epithelia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.