We study for the first time the environment of massive black hole (BH) seeds (~10^4-5 Msun) formed via the direct collapse of pristine gas clouds in massive haloes (>10^7 Msun) at z>6. Our model is based on the evolution of dark matter haloes within a cosmological N-body simulation, combined with prescriptions for the formation of BH along with both Pop III and Pop II stars. We calculate the spatially-varying intensity of Lyman Werner (LW) radiation from stars and identify the massive pristine haloes in which it is high enough to shut down molecular hydrogen cooling. In contrast to previous BH seeding models with a spatially constant LW background, we find that the intensity of LW radiation due to local sources, J_local, can be up to 10^6 times the spatially averaged background in the simulated volume and exceeds the critical value, J_crit, for the complete suppression of molecular cooling, in some cases by 4 orders of magnitude. Even after accounting for possible metal pollution in a halo from previous episodes of star formation, we find a steady rise in the formation rate of direct collapse (DC) BHs with decreasing redshift from 10^{-3}/Mpc^3/z at z=12 to 10^{-2}/Mpc^3/z at z=6. The onset of Pop II star formation at z~16 simultaneously marks the onset of the epoch of DCBH formation, as the increased level of LW radiation from Pop II stars is able to elevate the local levels of the LW intensity to J_local > J_crit while Pop III stars fail to do so at any time. The number density of DCBHs is sensitive to the number of LW photons and can vary by an order of magnitude at z=6 after accounting for reionisation feedback. Haloes hosting DCBHs are more clustered than similar massive counterparts that do not host DCBHs, especially at redshifts z>10. We also show that planned surveys with JWST should be able to detect the supermassive stellar precursors of DCBHs.Comment: 19 pages, 17 figures, v2 accepted for publication in MNRAS, minor additions in text and updates in reference
We investigate the properties of the first galaxies at z 10 with highly resolved numerical simulations, starting from cosmological initial conditions and taking into account all relevant primordial chemistry and cooling. A first galaxy is characterized by the onset of atomic hydrogen cooling, once the virial temperature exceeds 10 4 K, and its ability to retain photoheated gas. We follow the complex accretion and star formation history of a 5 × 10 7 M system by means of a detailed merger tree and derive an upper limit on the number of Population III (Pop III) stars formed prior to its assembly. We investigate the thermal and chemical evolution of infalling gas and find that partial ionization at temperatures 10 4 K catalyses the formation of H 2 and hydrogen deuteride, allowing the gas to cool to the temperature of the cosmic microwave background. Depending on the strength of radiative and chemical feedback, primordial star formation might be dominated by intermediate-mass Pop III stars formed during the assembly of the first galaxies. Accretion on to the nascent galaxy begins with hot accretion, where gas is accreted directly from the intergalactic medium and shock heated to the virial temperature, but is quickly accompanied by a phase of cold accretion, where the gas cools in filaments before flowing into the parent halo with high velocities. The latter drives supersonic turbulence at the centre of the galaxy and could lead to very efficient chemical mixing. The onset of turbulence in the first galaxies thus likely marks the transition to Pop II star formation.
We find that at redshifts z > 10, HD line cooling allows strongly-shocked primordial gas to cool to the temperature of the cosmic microwave background (CMB). This temperature is the minimum value attainable via radiative cooling. Provided that the abundance of HD, normalized to the total number density, exceeds a critical level of ~ 10^{-8}, the CMB temperature floor is reached in a time which is short compared to the Hubble time. We estimate the characteristic masses of stars formed out of shocked primordial gas in the wake of the first supernovae, and resulting from the mergers of dark matter haloes during hierarchical structure formation to be ~ 10 M_{solar}. In addition, we show that cooling by HD enables the primordial gas in relic H II regions to cool to temperatures considerably lower than those reached via H_2 cooling alone. We confirm that HD cooling is unimportant in cases where the primordial gas does not go through an ionized phase, as in the formation process of the very first stars in z ~ 20 minihaloes of mass ~ 10^{6} M_{solar}.Comment: 10 pages, 10 figures, accepted for publication in MNRAS with minor revisions, new table adde
We perform three-dimensional smoothed particle hydrodynamics simulations in a realistic cosmological setting to investigate the expansion, feedback, and chemical enrichment properties of a 200 M pair-instability supernova in the high-redshift universe. We find that the SN remnant propagates for a Hubble time at z ' 20 to a final massweighted mean shock radius of 2.5 kpc (proper), roughly half the size of the H ii region, and in this process sweeps up a total gas mass of 2:5 ; 10 5 M . The morphology of the shock becomes highly anisotropic once it leaves the host halo and encounters filaments and neighboring minihalos, while the bulk of the shock propagates into the voids of the intergalactic medium. The SN entirely disrupts the host halo and terminates further star formation for at least 200 Myr, while in our specific case it exerts positive mechanical feedback on neighboring minihalos by shock-compressing their cores. In contrast, we do not observe secondary star formation in the dense shell via gravitational fragmentation, due to the previous photoheating by the progenitor star. We find that cooling by metal lines is unimportant for the entire evolution of the SN remnant, while the metal-enriched, interior bubble expands adiabatically into the cavities created by the shock, and ultimately into the voids with a maximum extent similar to the final mass-weighted mean shock radius. Finally, we conclude that dark matter halos of at least M vir k 10 8 M must be assembled to recollect all components of the swept-up gas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.