Palladium-catalyzed methods for intermolecular aerobic oxidative amination of alkenes have been identified that are compatible with the use of alkene as the limiting reagent. These procedures, which enhance the utility of this reaction with alkenes that are not commercially available, are demonstrated with substrates bearing dialkyl ether, carboxyester, epoxide, and silyl ether groups.
The design, synthesis and biological evaluation (anticancer and antimalarial activity) of bis-β-carbolines, based on the structure of the naturally occurring alkaloid neokauluamine, is described.
The focus of this study was the development of a new synthetic method for quinazolinones based on the principles of Green Chemistry. Quinazolinones were synthesized from 2‐aminobenzamide using methanol as both the C1 source and a green solvent in the presence of base Cs2CO3. Additionally, a commercially available, economical copper complex was used as a catalyst in the reaction. The desired products were achieved in moderate to high yield with up to 99 % isolated yield.
Huperzine A (1, Hup A), a lycodine-type Lycopodium alkaloid isolated from Thai clubmosses Huperzia squarrosa (G. Forst.) Trevis., H. carinata (Desv. ex. Poir.) Trevis., H. phlegmaria (L.), and Phlegmariurus nummulariifolius (Blume) Chambers (Lycopodiaceae), exerts inhibitory activity on acetylcholinesterase, a known target for Alzheimer's disease therapy. This study investigated the structure−activity relationship of C(2)-functionalized and O-or N-methyl-substituted huperzine A derivatives. In silico-guided screening was performed to search for potential active compounds. Molecular docking analysis suggested that substitution at the C(2) position of Hup A with small functional groups could enhance binding affinity with AChE. Consequently, 12 C(2)-functionalized and four O-or N-methyl-substituted compounds were semi-synthesized and evaluated for their eeAChE and eqBChE inhibitory activities. The result showed that 2-methoxyhuperzine A (10) displayed moderate to high eeAChE inhibitory potency (IC 50 = 0.16 μM) with the best selectivity over eqBChE (selectivity index = 3633). Notably, this work showed a case of which computational analysis could be utilized as a tool to rationally screen and design promising drug molecules, getting rid of impotent molecules before going more deeply on labor-intensive and time-consuming drug discovery and development processes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.