Protracted social isolation of adult mice induced behavioral, transcriptional and ultrastructural changes in oligodendrocytes of the prefrontal cortex (PFC) and impaired adult myelination. Social re-integration was sufficient to normalize behavioral and transcriptional changes. Short periods of isolation affected chromatin and myelin, but did not induce behavioral changes. Thus, myelinating oligodendrocytes in the adult PFC respond to social interaction with chromatin changes, suggesting that myelination acts as a form of adult plasticity.
In many cell types, differentiation requires an interplay between extrinsic signals and transcriptional changes mediated by repressive and activating histone modifications. Oligodendrocyte progenitors (OPCs) are electrically responsive cells receiving synaptic input. The differentiation of these cells into myelinating oligodendrocytes is characterized by temporal waves of gene repression followed by activation of myelin genes and progressive decline of electrical responsiveness. In this study, we used chromatin isolated from rat OPCs and immature oligodendrocytes, to characterize the genome-wide distribution of the repressive histone marks, H3K9me3 and H3K27me3, during differentiation. Although both marks were present at the OPC stage, only H3K9me3 marks (but not H3K27me3) were found to be increased during differentiation, at genes related to neuronal lineage and regulation of membrane excitability. Consistent with these findings, the levels and activity of H3K9 methyltransferases (H3K9 HMT), but not H3K27 HMT, increased more prominently upon exposure to oligodendrocyte differentiating stimuli and were detected in stage-specific repressive protein complexes containing the transcription factors SOX10 or YY1. Silencing H3K9 HMT, but not H3K27 HMT, impaired oligodendrocyte differentiation and functionally altered the response of oligodendrocytes to electrical stimulation. Together, these results identify repressive H3K9 methylation as critical for gene repression during oligodendrocyte differentiation.
SUMMARY
Lysine acetylation regulates gene expression through modulating protein-protein interactions in chromatin. Chemical inhibition of acetyl-lysine binding bromodomains of the major chromatin regulators BET (bromodomain and extra-terminal domain) proteins, has been shown to effectively block cell proliferation in cancer and inflammation. However, whether selective inhibition of individual BET bromodomains has distinctive functional consequences, remains only partially understood. In this study, we show that selective chemical inhibition of the first bromodomain of BET proteins using our newly designed small molecule inhibitor, Olinone, accelerated the progression of mouse primary oligodendrocyte progenitors towards differentiation, while inhibition of both bromodomains of BET proteins hindered differentiation. This effect was target-specific, as it was not detected in cells treated with inactive analogues and independent of any effect on proliferation. Therefore, selective chemical modulation of individual bromodomains, rather than use of broad-based inhibitors may enhance regenerative strategies in disorders characterized by myelin loss such as aging and neurodegeneration.
These results suggest that a significant increase in oxidative stress may play a role in the pathogenesis of POAG and PACG. Determination of oxidative stress in aqueous humor may help in understanding the course of this disease, and oxidative damage might be a relevant target for both prevention and therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.