EVE is a framework for the setup, implementation, and evaluation of experiments in virtual reality. The framework aims to reduce repetitive and error-prone steps that occur during experiment-setup while providing data management and evaluation capabilities. EVE aims to assist researchers who do not have specialized training in computer science. The framework is based on the popular platforms of Unity and MiddleVR. Database support, visualization tools, and scripting for R make EVE a comprehensive solution for research using VR. In this article, we illustrate the functions and flexibility of EVE in the context of an ongoing VR experiment called Neighbourhood Walk.
Virtual reality (VR) experiments are increasingly employed because of their internal and external validity compared to real-world observation and laboratory experiments, respectively. VR is especially useful for geographic visualizations and investigations of spatial behavior. In spatial behavior research, VR provides a platform for studying the relationship between navigation and physiological measures (e.g., skin conductance, heart rate, blood pressure). Specifically, physiological measures allow researchers to address novel questions and constrain previous theories of spatial abilities, strategies, and performance. For example, individual differences in navigation performance may be explained by the extent to which changes in arousal mediate the effects of task difficulty. However, the complexities in the design and implementation of VR experiments can distract experimenters from their primary research goals and introduce irregularities in data collection and analysis. To address these challenges, the Experiments in Virtual Environments (EVE) framework includes standardized modules such as participant training with the control interface, data collection using questionnaires, the synchronization of physiological measurements, and data storage. EVE also provides the necessary infrastructure for data management, visualization, and evaluation. The present paper describes a protocol that employs the EVE framework to conduct navigation experiments in VR with physiological sensors. The protocol lists the steps necessary for recruiting participants, attaching the physiological sensors, administering the experiment using EVE, and assessing the collected data with EVE evaluation tools. Overall, this protocol will facilitate future research by streamlining the design and implementation of VR experiments with physiological sensors.
Living in a disadvantaged neighborhood is associated with worse health and early mortality. Although many mechanisms may partially account for this effect, disadvantaged neighborhood environments are hypothesized to elicit stress and emotional responses that accumulate over time and influence physical and mental health. However, evidence for neighborhood effects on stress and emotion is limited due to methodological challenges. In order to address this question, we developed a virtual reality experimental model of neighborhood disadvantage and affluence and examined the effects of simulated neighborhoods on immediate stress and emotion. Exposure to neighborhood disadvantage resulted in greater negative emotion, less positive emotion, and more compassion, compared to exposure to affluence. However, the effect of virtual neighborhood environments on blood pressure and electrodermal reactivity depended on parental education. Participants from families with lower education exhibited greater reactivity to the disadvantaged neighborhood, while those from families with higher education exhibited greater reactivity to the affluent neighborhood. These results demonstrate that simulated neighborhood environments can elicit immediate stress reactivity and emotion, but the nature of physiological effects depends on sensitization to prior experience.
Smart Cities already surround us, and yet they are still incomprehensibly far from directly impacting everyday life. While current Smart Cities are often inaccessible, the experience of everyday citizens may be enhanced with a combination of the emerging technologies Digital Twins (DTs) and Situated Analytics. DTs represent their Physical Twin (PT) in the real world via models, simulations, (remotely) sensed data, context awareness, and interactions. However, interaction requires appropriate interfaces to address the complexity of the city. Ultimately, leveraging the potential of Smart Cities requires going beyond assembling the DT to be comprehensive and accessible. Situated Analytics allows for the anchoring of city information in its spatial context. We advance the concept of embedding the DT into the PT through Situated Analytics to form Fused Twins (FTs). This fusion allows access to data in the location that it is generated in in an embodied context that can make the data more understandable. Prototypes of FTs are rapidly emerging from different domains, but Smart Cities represent the context with the most potential for FTs in the future. This paper reviews DTs, Situated Analytics, and Smart Cities as the foundations of FTs. Regarding DTs, we define five components (physical, data, analytical, virtual, and Connection Environments) that we relate to several cognates (i.e., similar but different terms) from existing literature. Regarding Situated Analytics, we review the effects of user embodiment on cognition and cognitive load. Finally, we classify existing partial examples of FTs from the literature and address their construction from Augmented Reality, Geographic Information Systems, Building/City Information Models, and DTs and provide an overview of future directions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.