Detecting antibiotics in the milk supply chain is crucial to protect humans from allergic reactions, as well as preventing the build-up of antibiotic resistance. The dairy industry has controls in place at processing facilities, but controls on dairy farms are limited to manual devices. Errors in the use of these manual devices can result in severe financial harm to the farms. This illustrates an urgent need for automated methods of detecting antibiotics on a dairy farm, to prevent the shipment of milk containing antibiotics. This work introduces the microchip capillary electrophoresis dairy device, a low-cost system that utilizes microchip capillary electrophoresis as well as fluorescence spectroscopy for the detection of ciprofloxacin contained in milk. The microchip capillary electrophoresis dairy device is operated under antibiotic-absent conditions, with ciprofloxacin not present in a milk sample, and antibiotic-present conditions, with ciprofloxacin present in a milk sample. The response curve for the microchip capillary electrophoresis dairy device is found through experimental operation with varied concentrations of ciprofloxacin. The sensitivity and limit of detection are quantified for the microchip capillary electrophoresis dairy device.
This paper presents an inexpensive and easy‐to‐implement voltage sequencer instrument for use in microchip capillary electrophoresis (MCE) actuation. The voltage sequencer instrument takes a 0–5 V input signal from a microcontroller and produces a reciprocally proportional voltage signal with the capability to achieve the voltages required for MCE actuation. The unit developed in this work features four independent voltage channels, measures 105 × 143 × 45 mm (width × length × height), and the cost to assemble is under 60 USD. The system is controlled by a peripheral interface controller and commands are given via universal serial bus connection to a personal computer running a command line graphical user interface. The performance of the voltage sequencer is demonstrated by its integration with a fluorescence spectroscopy MCE sensor using pinched sample injection and electrophoretic separation to detect ciprofloxacin in samples of milk. This application is chosen as it is particularly important for the dairy industry, where fines and health concerns are associated with the shipping of antibiotic‐contaminated milk. The voltage sequencer instrument presented represents an effective low‐cost instrumentation method for conducting MCE, thereby making these experiments accessible and affordable for use in industries such as the dairy industry.
This work introduces a sensor for dairy antibiotic detection of ciprofloxacin in milk. We provide an important tool for antibiotic detection in milk and the main contributions of this work are as follows. We introduce a technique based on florescence spectroscopy and lock-in amplification for sensing ciprofloxacin in milk that is capable of detection below the regulatory limit. We compare the system against one without the integrated lock-in amplification, as in traditional fluorescence sensors. We provide microchip capillary electrophoresis results and place our work in context for future integration with microchip capillary electrophoresis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.