<p>In the last few years, the non-isolated dc converters involving high voltage gain with adequate performance are becoming quite popular in industrial applications. This is resulting in high voltage and current stress on the power device (switches and diodes), as well as a limited output voltage with a high duty cycle. This paper proposes a multi-phase non-isolated boost converter that uses capacitor clamping to increase output voltage while reducing stress across the power device. There are two stages in the proposed converter (first stage is three inductors and three switches and the second stage is clamper circuit of three capacitors and three diodes). The proposed converter is high voltage gain, with low voltage stress through switches transistors. To justify the theoretical analysis, the concept was validated through mathematical analysis and by simulation using MATLAB/SIMULINK. The results carried out the results permit the converter behavior and performance to be accurately.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.