Depression is increasingly prevalent, leading to higher suicide risk. Depression detection and sentimental analysis of text inputs in cross-domain frameworks are challenging. Solo deep learning (SDL) and ensemble deep learning (EDL) models are not robust enough. Recently, attention mechanisms have been introduced in SDL. We hypothesize that attention-enabled EDL (aeEDL) architectures are superior compared to attention-not-enabled SDL (aneSDL) or aeSDL models. We designed EDL-based architectures with attention blocks to build eleven kinds of SDL model and five kinds of EDL model on four domain-specific datasets. We scientifically validated our models by comparing “seen” and “unseen” paradigms (SUP). We benchmarked our results against the SemEval (2016) sentimental dataset and established reliability tests. The mean increase in accuracy for EDL over their corresponding SDL components was 4.49%. Regarding the effect of attention block, the increase in the mean accuracy (AUC) of aeSDL over aneSDL was 2.58% (1.73%), and the increase in the mean accuracy (AUC) of aeEDL over aneEDL was 2.76% (2.80%). When comparing EDL vs. SDL for non-attention and attention, the mean aneEDL was greater than aneSDL by 4.82% (3.71%), and the mean aeEDL was greater than aeSDL by 5.06% (4.81%). For the benchmarking dataset (SemEval), the best-performing aeEDL model (ALBERT+BERT-BiLSTM) was superior to the best aeSDL (BERT-BiLSTM) model by 3.86%. Our scientific validation and robust design showed a difference of only 2.7% in SUP, thereby meeting the regulatory constraints. We validated all our hypotheses and further demonstrated that aeEDL is a very effective and generalized method for detecting symptoms of depression in cross-domain settings.
The Internet of Medical Things (IoMT) is a kind of communication environment, which deals with communication that occurs through the Internet of Things (IoT)-enabled smart medical (healthcare) devices. The potential security threats of IoMT affect the confidentiality, integrity, authenticity and availability of its data and the associated resources. In this review article, we explain various architectures of IoMT communication along with their applications.We highlight the security requirements of IoMT communication environment along with some potential security attacks and threats of IoMT. Furthermore, the network model and adversary model of IoMT communication are provided. A taxonomy of security protocols of IoMT communication environment is additionally added, which contains various security protocols, such as key management, user/device authentication, access control and intrusion detection protocols. Moreover, we provide a detailed comprehensive comparative analysis of several security protocols with respect to various parameters, like computation cost, communication cost, security features and functionality features, accuracy and F1-score. Additionally, we also provide some future research directions.
The Internet of Medical Things (IoMT) is a unification of smart healthcare devices, tools, and software, which connect various patients and other users to the healthcare information system through the networking technology. It further reduces unnecessary hospital visits and the burden on healthcare systems by connecting the patients to their healthcare experts (i.e., doctors) and allows secure transmission of healthcare data over an insecure channel (e.g., the Internet). Since Artificial Intelligence (AI) has a great impact on the performance and usability of an information system, it is important to include its modules in a healthcare information system, which will be very helpful for the prediction of some phenomena, such as chances of getting a heart attack and possibility of a tumor, from the collected and analysed healthcare data. To mitigate these issues, in this paper, a new AI-enabled lightweight, secure communication scheme for an IoMT environment has been designed and named as ASCP-IoMT, in short. The security analysis of ASCP-IoMT is performed in different ways, such as an informal way and a formal way (through the random oracle model). ASCP-IoMT performs better than other similar schemes and provides superior security with extra functionality features as compared those for the existing state of art solutions. A practical implementation of ASCP-IoMT is also performed in order to measure its impact on various network performance parameters. The end to end delay values of ASCP-IoMT are 0.01587, 0.07440 and 0.17097 seconds and the throughput values of ASCP-IoMT are 5.05, 10.88 and 16.41 bps under the different considered cases, respectively. For AI-based Big data analytics phase, the values of computation time (seconds) for decision tree, support vector machine (SVM), and logistic regression are measured as 0.19, 0.23, and 0.27, respectively. Moreover, the different values of accuracy for decision tree, SVM and logistic regression are 84.24%, 87.57%, and 85.20%, respectively. From these values, it is clear that decision tree method requires less time than the other considered techniques, whereas accuracy is high in case of SVM.
One of the most significant recent advances in technology is the advent of unmanned aerial vehicles (UAVs), i.e., drones. They have widened the scope of possible applications and provided a platform for a wide range of creative responses to a variety of challenges. The Internet of Drones (IoD) is a relatively new concept that has arisen as a consequence of the combination of drones and the Internet. The fifth-generation (5G) and beyond cellular networks (i.e., drones in networks beyond 5G) are promising solutions for achieving safe drone operations and applications. They may have many applications, like surveillance or urban areas, security, surveillance, retaliation, delivering items, smart farming, film production, capturing nature videos, and many more. Due to the fact that it is susceptible to a wide variety of cyber-attacks, there are certain concerns regarding the privacy and security of IoD communications. In this paper, a secure blockchain-enabled authentication key management framework with the big data analytics feature for drones in networks beyond 5G applications is proposed (in short, SBBDA-IoD). The security of SBBDA-IoD against multiple attacks is demonstrated through a detailed security analysis. The Scyther tool is used to perform a formal security verification test on the SBBDA-IoD’s security, confirming the system’s resistance to various potential attacks. A detailed comparative analysis has identified that SBBDA-IoD outperforms the other schemes by a significant margin. Finally, a real-world implementation of SBBDA-IoD is shown to evaluate its effect on several measures of performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.