Regioselective biocatalytic oxyfunctionalization of n-alkanes for the production of non-vicinal diols through sequential oxygenation by a cytochrome P450 monooxygenase.
Toxoplasmosis is a parasitic disease caused by infection with Toxoplasma gondii that currently has few therapeutic options. The M1 aminopeptidase enzymes have been shown to be attractive targets for anti-parasitic agents and / or vaccine candidates, suggesting potential to re-purpose inhibitors between parasite M1 aminopeptidase targets. The M1 aminopeptidase TgAPN2 has been suggested to be a potential new drug target for toxoplasmosis. Here we investigate the structure and function of TgAPN2, a homolog of the antimalarial drug target PfA-M1, and evaluate the capacity to use inhibitors that target PfA-M1 against TgAPN2. The results show that despite a similar overall fold, the TgAPN2 has a unique substrate specificity and inhibition profile. Sequence and structure differences are investigated and show how comparative structure-activity relationships may provide a route to obtaining potent inhibitors of TgAPN2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.