Transcriptional profiling highlighted a subset of genes encoding putative multidrug transporters in the pathogen Bacillus cereus that were up-regulated during stress produced by bile salts. One of these multidrug transporters (BC4707) was selected for investigation. Functional characterization of the BC4707 protein in Escherichia coli revealed a role in the energized efflux of xenobiotics. Phenotypic analyses after inactivation of the gene bc4707 in Bacillus cereus ATCC14579 suggested a more specific, but modest role in the efflux of norfloxacin. In addition to this, transcriptional analyses showed that BC4707 is also expressed during growth of B. cereus under non-stressful conditions where it may have a role in the normal physiology of the bacteria. Altogether, the results indicate that bc4707, which is part of the core genome of the B. cereus group of bacteria, encodes a multidrug resistance efflux protein that is likely involved in maintaining intracellular homeostasis during growth of the bacteria.
Squamous cell carcinoma (SCC) is one of the most common skin cancers and causes significant morbidity. Although the expression of the epithelial adhesion molecule collagen XVII (ColXVII) has been linked to SCC invasion, only little is known about its mechanistic contribution. Here, we demonstrate that ColXVII expression is essential for SCC cell proliferation and motility. Moreover, it revealed that particularly the post-translational modification of ColXVII by ectodomain shedding is the major driver of SCC progression, because ectodomain-selective immunostaining was mainly localized at the invasive front of human cutaneous SCCs, and exclusive expression of a non-sheddable ColXVII mutant in SCC-25 cells inhibits their matrix-independent growth and invasiveness. This cell surface proteolysis, which is strongly elevated during SCC invasion and metastasis, releases soluble ectodomains and membrane-anchored endodomains. Both released ColXVII domains play distinct roles in tumor progression: the endodomain induces proliferation and survival, whereas the ectodomain accelerates invasiveness. Furthermore, specific blockage of shedding by monoclonal ColXVII antibodies repressed matrix-independent growth and invasion of SCC cells in organotypic co-cultures. Thus, selective inhibition of ColXVII shedding may offer a promising therapeutic strategy to prevent SCC progression.
Phylogenetic classification divides the major facilitator superfamily (MFS) into 82 families, including 25 families that are comprised of transporters with no characterized functions. This study describes functional data for BC3310 from Bacillus cereus ATCC 14579, a member of the “unknown major facilitator family-2” (UMF-2). BC3310 was shown to be a multidrug efflux pump conferring resistance to ethidium bromide, SDS and silver nitrate when heterologously expressed in Escherichia coli DH5α ΔacrAB. A conserved aspartate residue (D105) in putative transmembrane helix 4 was identified, which was essential for the energy dependent ethidium bromide efflux by BC3310. Transport proteins of the MFS comprise specific sequence motifs. Sequence analysis of UMF-2 proteins revealed that they carry a variant of the MFS motif A, which may be used as a marker to distinguish easily between this family and other MFS proteins. Genes orthologous to bc3310 are highly conserved within the B. cereus group of organisms and thus belong to the core genome, suggesting an important conserved functional role in the normal physiology of these bacteria.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.