Dengue, Zika and chikungunya are diseases of global health significance caused by arboviruses and transmitted by the mosquito Aedes aegypti, which is of worldwide circulation. The arrival of the Zika and chikungunya viruses to South America increased the complexity of transmission and morbidity caused by these viruses co-circulating in the same vector mosquito species. Here we present an integrated analysis of the reported arbovirus cases between 2007 and 2017 and local climate and socio-economic profiles of three distinct Colombian municipalities (Bello, Cúcuta and Moniquirá). These locations were confirmed as three different ecosystems given their contrasted geographic, climatic and socio-economic profiles. Correlational analyses were conducted with both generalised linear models and generalised additive models for the geographical data. Average temperature, minimum temperature and wind speed were strongly correlated with disease incidence. The transmission of Zika during the 2016 epidemic appeared to decrease circulation of dengue in Cúcuta, an area of sustained high incidence of dengue. Socio-economic factors such as barriers to health and childhood services, inadequate sanitation and poor water supply suggested an unfavourable impact on the transmission of dengue, Zika and chikungunya in all three ecosystems. Socio-demographic influencers were also discussed including the influx of people to Cúcuta, fleeing political and economic instability from neighbouring Venezuela. Aedes aegypti is expanding its range and increasing the global threat of these diseases. It is therefore vital that we learn from the epidemiology of these arboviruses and translate it into an actionable local knowledge base. This is even more acute given the recent historical high of dengue cases in the Americas in 2019, preceding the COVID-19 pandemic, which is itself hampering mosquito control efforts.
Arboviruses including dengue, Zika, and chikungunya are amongst the most significant public health concerns worldwide. Arbovirus control relies on the use of insecticides to control the vector mosquito Aedes aegypti (Linnaeus), the success of which is threatened by widespread insecticide resistance. The work presented here profiled the gene expression of Ae. aegypti larvae from field populations of Ae. aegypti with differential susceptibility to temephos originating from two Colombian urban locations, Bello and Cúcuta, previously reported to have distinctive disease incidence, socioeconomics, and climate. We demonstrated that an exclusive field-to-lab (Ae. aegypti strain New Orleans) comparison generates an over estimation of differential gene expression (DGE) and that the inclusion of a geographically relevant field control yields a more discrete, and likely, more specific set of genes. The composition of the obtained DGE profiles is varied, with commonly reported resistance associated genes including detoxifying enzymes having only a small representation. We identify cuticle biosynthesis, ion exchange homeostasis, an extensive number of long noncoding RNAs, and chromatin modelling among the differentially expressed genes in field resistant Ae. aegypti larvae. It was also shown that temephos resistant larvae undertake further gene expression responses when temporarily exposed to temephos. The results from the sampling triangulation approach here contribute a discrete DGE profiling with reduced noise that permitted the observation of a greater gene diversity, increasing the number of potential targets for the control of insecticide resistant mosquitoes and widening our knowledge base on the complex phenotypic network of the Ae. aegypti response to insecticides.
BACTRIM™ sulfamethoxazole and trimethoprim DS (double strength) tablets and tablets USP To reduce the development of drug-resistant bacteria and maintain the effectiveness of Bactrim (sulfamethoxazole and trimethoprim) tablets and other antibacterial drugs, Bactrim (sulfamethoxazole and trimethoprim) tablets should be used only to treat or prevent infections that are proven or strongly suspected to be caused by bacteria. DESCRIPTION BACTRIM (sulfamethoxazole and trimethoprim) is a synthetic antibacterial combination product available in DS (double strength) tablets, each containing 800 mg sulfamethoxazole and 160 mg trimethoprim; in tablets, each containing 400 mg sulfamethoxazole and 80 mg trimethoprim for oral administration. Sulfamethoxazole is N 1-(5-methyl-3-isoxazolyl)sulfanilamide; the molecular formula is C 10 H 11 N 3 O 3 S. It is an almost white, odorless, tasteless compound with a molecular weight of 253.28 and the following structural formula: Trimethoprim is 2,4-diamino-5-(3,4,5-trimethoxybenzyl)pyrimidine; the molecular formula is C 14 H 18 N 4 O 3. It is a white to light yellow, odorless, bitter compound with a molecular weight of 290.3 and the following structural formula: Inactive ingredients: Docusate sodium 85%, sodium benzoate 15%, sodium starch glycolate, magnesium stearate and pregelatinized starch. CLINICAL PHARMACOLOGY BACTRIM is rapidly absorbed following oral administration. Both sulfamethoxazole and trimethoprim exist in the blood as unbound, protein-bound and metabolized forms; sulfamethoxazole also exists as the conjugated form. The metabolism of sulfamethoxazole occurs predominately by N 4-acetylation, although the glucuronide conjugate has been identified. The principal metabolites of trimethoprim are the 1-and 3-oxides and the 3'-and 4'-hydroxy derivatives. The free forms of sulfamethoxazole and trimethoprim are considered to be the therapeutically active forms. Approximately 70% of sulfamethoxazole and 44% of trimethoprim
Insecticide resistance is a significant challenge facing the successful control of mosquito vectors globally. Bioassays are currently the only method for phenotyping resistance. They require large numbers of mosquitoes for testing, the availability of a susceptible comparator strain, and often insectary facilities. This study aimed to trial the novel use of rapid evaporative ionization mass spectrometry (REIMS) for the identification of insecticide resistance in mosquitoes. No sample preparation is required for REIMS and analysis can be rapidly conducted within hours. Temephos resistant Aedes aegypti (Linnaeus) larvae from Cúcuta, Colombia and temephos susceptible larvae from two origins (Bello, Colombia, and the lab reference strain New Orleans) were analyzed using REIMS. We tested the ability of REIMS to differentiate three relevant variants: population source, lab versus field origin, and response to insecticide. The classification of these data was undertaken using linear discriminant analysis (LDA) and random forest. Classification models built using REIMS data were able to differentiate between Ae. aegypti larvae from different populations with 82% (±0.01) accuracy, between mosquitoes of field and lab origin with 89% (±0.01) accuracy and between susceptible and resistant larvae with 85% (±0.01) accuracy. LDA classifiers had higher efficiency than random forest with this data set. The high accuracy observed here identifies REIMS as a potential new tool for rapid identification of resistance in mosquitoes. We argue that REIMS and similar modern phenotyping alternatives should complement existing insecticide resistance management tools.
Bacteria can survive high doses of antibiotics through stochastic phenotypic diversification.We present initial evidence that folate metabolism could be involved with the formation of persisters. The aberrant expression of the folate enzyme gene fau seems to reduce the incidence of persisters to antibiotics. Folate impaired bacteria had a lower generation rate for persisters to both antibiotics ampicillin and ofloxacin. Persister bacteria were detectable from the outset of the exponential growth phase in the complex media. Gene expression analyses showed tentatively distinctive profiles in exponential growth at times when bacteria persisters were observed. Levels of persisters were assessed in bacteria with altered, genetically and pharmacologically, folate metabolism. This work shows that by disrupting folate biosynthesis and usage, bacterial tolerance to antibiotics seems to be diminished. Based on these findings there is a possibility that bacteriostatic antibiotics such as antifolates could have a role to play in clinical settings where the incidence of antibiotic persisters seem to drive recalcitrant infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.