Carbon dots (CDots) are defined as surface-passivated small carbon nanoparticles, with the effective passivation generally achieved by organic functionalization. Photoexcited CDots are both potent electron donors and acceptors, and their...
This study aimed to address the significant problems of bacterial biofilms found in medical fields and many industries. It explores the potential of classic photoactive carbon dots (CDots), with 2,2′-(ethylenedioxy)bis (ethylamine) (EDA) for dot surface functionalization (thus, EDA-CDots) for their inhibitory effect on B. subtilis biofilm formation and the inactivation of B. subtilis cells within established biofilm. The EDA-CDots were synthesized by chemical functionalization of selected small carbon nanoparticles with EDA molecules in amidation reactions. The inhibitory efficacy of CDots with visible light against biofilm formation was dependent significantly on the time point when CDots were added; the earlier the CDots were added, the better the inhibitory effect on the biofilm formation. The evaluation of antibacterial action of light-activated EDA-CDots against planktonic B. subtilis cells versus the cells in biofilm indicate that CDots are highly effective for inactivating planktonic cells but barely inactivate cells in established biofilms. However, when coupling with chelating agents (e.g., EDTA) to target the biofilm architecture by breaking or weakening the EPS protection, much enhanced photoinactivation of biofilm-associated cells by CDots was achieved. The study demonstrates the potential of CDots to prevent the initiation of biofilm formation and to inhibit biofilm growth at an early stage. Strategic combination treatment could enhance the effectiveness of photoinactivation by CDots to biofilm-associated cells.
Foodborne pathogens have long been recognized as major challenges for the food industry and repeatedly implicated in food product recalls and outbreaks of foodborne diseases. This study demonstrated the application of a recently discovered class of visible-light activated carbon-based nanoparticles, namely carbon dots (CDots), for photodynamic inactivation of foodborne pathogens. The results demonstrated that CDots were highly effective in the photo-inactivation of
Listeria monocytogenes
in suspensions and on stainless steel surfaces. However, it was much less effective to
Salmonella
cells, but treatments with higher CDots concentration and longer time were still able to inactivate
Salmonella
cells. Mechanistic implications of the observed different antibacterial effects on the two types of cells were discussed, and the associated generation of intracellular reactive oxygen species (ROS), the resulted lipid peroxidation, and the leakage of nucleic acid and proteins from the treated cells were analyzed, with the results collectively suggesting CDots as a class of promising photodynamic inactivation agents for foodborne pathogens.
Importance:
Foodborne infectious diseases have long been recognized as major challenges in public health. Contaminations of food processing facilities and equipment with foodborne pathogens occur often. There is a critical need for new tools/approaches to control the pathogens and prevent such contaminations in food processing facilities and other settings. This study reports a newly established antimicrobial nanomaterials platform, carbon dots (CDots) coupled with visible/natural light, for effectively and efficiently inactivation of representative foodborne bacterial pathogens. The study will contribute to promoting the practical application of CDots as a new class of promising nanomaterial-based photodynamic inactivation agents for foodborne pathogens.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.