The most accurate source localization is obtained when the voltage surface is densely sampled over both the superior and inferior surfaces.
Epilepsy may reflect a focal abnormality of cerebral tissue, but the generation of seizures typically involves propagation of abnormal activity through cerebral networks. We examined epileptiform discharges (spikes) with dense array electroencephalography (dEEG) in five patients to search for the possible engagement of pathological networks. Source analysis was conducted with individual electrical head models for each patient, including sensor position measurement for registration with MRI with geodesic photogrammetry; tissue segmentation and skull conductivity modeling with an atlas skull warped to each patient’s MRI; cortical surface extraction and tessellation into 1 cm2 equivalent dipole patches; inverse source estimation with either minimum norm or cortical surface Laplacian constraints; and spectral coherence computed among equivalent dipoles aggregated within Brodmann areas with 1 Hz resolution from 1 to 70 Hz. These analyses revealed characteristic source coherence patterns in each patient during the pre-spike, spike, and post-spike intervals. For one patient with both spikes and seizure onset localized to a single temporal lobe, we observed a cluster of apparently abnormal coherences over the involved temporal lobe. For the other patients, there were apparently characteristic coherence patterns associated with the discharges, and in some cases these appeared to reflect abnormal temporal lobe synchronization, but the coherence patterns for these patients were not easily related to an unequivocal epileptogenic zone. In contrast, simple localization of the site of onset of the spike discharge, and/or the site of onset of the seizure, with non-invasive 256 dEEG was useful in predicting the characteristic site of seizure onset for those cases that were verified by intracranial EEG and/or by surgical outcome.
Electroencephalographic (EEG) oscillations in multiple frequency bands can be observed during functional activity of the cerebral cortex. An important question is whether activity of focal areas of cortex, such as during finger movements, is tracked by focal oscillatory EEG changes. Although a number of studies have compared EEG changes to functional MRI hemodynamic responses, we can find no previous research that relates the fMRI hemodynamic activity to localization of the multiple EEG frequency changes observed in motor tasks. In the present study, five participants performed similar thumb and finger movement tasks in parallel EEG and functional MRI studies. We examined changes in five frequency bands (from 5–120 Hz) and localized them using 256 dense-array EEG (dEEG) recordings and high-resolution individual head models. These localizations were compared with fMRI localizations in the same participants. Results showed that beta-band (14–30 Hz) desynchronizations (power decreases) were the most robust effects, appearing in all individuals, consistently localized to the hand region of the primary motor cortex, and consistently aligned with fMRI localizations.
Objective and importance: Resective surgery is an effective treatment for refractory temporal lobe epilepsy. In difficult cases, invasive monitoring may be needed to precisely lateralise and localise seizure foci of mesial temporal origin. The authors present a modified technique for image guided, endoscopic placement of an intraventricular electrode array (IVE) that abuts the amygdalo-hippocampal complex. Methods: Eight patients with suspected mesial temporal lobe epilepsy had placement of an IVE in conjunction with other invasive electrodes. Seven of these patients also had subdural grid or strip electrodes and four had foramen ovale electrodes. Frameless image guidance was used to place a custom 10-contact depth electrode through a rigid neuroendoscope within the atrium of the lateral ventricle. Once proper orientation towards the temporal horn was confirmed, the IVE array was advanced into the temporal horn to the temporal tip. The endoscope was removed and electrode placement was confirmed through an intraoperative lateral skull radiograph and on visual inspection at the time of resection in two cases. Results: The IVE was crucial for localisation in one patient and helped localisation in four others. Surgery was offered to seven patients. The only serious complication of IVE placement was a thalamic contusion presumably from an errant electrode tip. One electrode was inadvertently placed into the frontal horn. There were no deaths and no permanent morbidity associated with the procedure. Conclusion: Endoscopically placed temporal horn, intraventricular electrodes provide an alternative to transcortical depth electrode placement. The technique hopefully can avoid complications associated with multiple depth electrode placements, especially when bilateral amygdalo-hippocampal electrical recordings are desired, although there may be a steep learning curve.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.