An algorithm for ZIKV serodiagnosis based on 3 simple ELISAs is proposed to distinguish primary ZIKV, ZIKV with previous DENV, and secondary DENV infections; this could be applied to serodiagnosis for ZIKV, serosurveillance, and monitoring ZIKV infection during pregnancy to understand the epidemiology, pathogenesis, and complications of ZIKV in dengue-endemic regions.
The recent outbreaks of Zika virus (ZIKV) and associated birth defects in regions of dengue virus (DENV) endemicity emphasize the need for sensitive and specific serodiagnostic tests. We reported previously that enzyme-linked immunosorbent assays (ELISAs) based on the nonstructural protein 1 (NS1) of DENV serotype 1 (DENV1) and ZIKV can distinguish primary DENV1, secondary DENV, and ZIKV infections. Whether ELISAs based on NS1 proteins of other DENV serotypes can discriminate various DENV and ZIKV infections remains unknown. We herein developed DENV2, DENV3, and DENV4 NS1 IgG ELISAs to test convalescent- and postconvalescent-phase samples from reverse transcription-PCR-confirmed cases, including 25 primary DENV1, 24 primary DENV2, 10 primary DENV3, 67 secondary DENV, 36 primary West Nile virus, 38 primary ZIKV, and 35 ZIKV with previous DENV infections as well as 55 flavivirus-naive samples. Each ELISA detected primary DENV infection with a sensitivity of 100% for the same serotype and 23.8% to 100% for different serotypes. IgG ELISA using a mixture of DENV1-4 NS1 proteins detected different primary and secondary DENV infections with a sensitivity of 95.6% and specificity of 89.5%. The ZIKV NS1 IgG ELISA detected ZIKV infection with a sensitivity of 100% and specificity of 82.9%. On the basis of the relative optical density ratio, the combination of DENV1-4 and ZIKV NS1 IgG ELISAs distinguished ZIKV with previous DENV and secondary DENV infections with a sensitivity of 91.7% to 94.1% and specificity of 87.0% to 95.0%. These findings have important applications to serodiagnosis, serosurveillance, and monitoring of both DENV and ZIKV infections in regions of endemicity.
Objective : To demonstrate the effectiveness of medication abortion with the implementation of telemedicine and a no-test protocol in response to the COVID-19 pandemic. Study design : This is a retrospective cohort study of patients who had a medication abortion up to 77 days gestation at the University of Hawai‘i between April and November 2020. Patients had the option of traditional in clinic care or telemedicine with either in clinic pickup or mailing of medications. During this time, a no-test protocol for medication abortion without prior labs or ultrasound was in place for eligible patients. The primary outcome was the rate of successful medication abortion without surgical intervention. Secondary outcomes included abortion-related complications. Results : A total of 334 patients were dispensed mifepristone and misoprostol, 149 (44.6%) with telemedicine with in-person pickup of medications, 75 (22.5%) via telemedicine with medications mailed, and 110 (32.9%) via traditional in person visits. The overall rate of complete medication abortion without surgical intervention was 95.8%, with success rates of 96.8, 97.1, and 93.6% for the clinic pickup, mail, and clinic visit groups, respectively. Success for those without an ultrasound performed prior to the procedure was 96.6%, compared to 95.5% for those with ultrasound. We obtained follow up data for 87.8% of participants. Conclusions : Medication abortion was safe and effective while offering multiple modes of care delivery including telemedicine visits without an ultrasound performed prior to dispensing medications. Implications : Incorporating telemedicine and a no-test protocol for medication abortion is safe and has the potential to expand access to abortion care. All care models had low rates of adverse events, which contradicts the idea that the Risk Evaluation and Mitigation Strategy increases the safety of medication abortion.
Dengue virus (DENV) is the leading cause of arboviral diseases in humans worldwide. In this study, we investigated the seroprevalence of DENV infection in two districts of Kaohsiung City, a metropolis in southern Taiwan, where major dengue outbreaks have occurred in the past three decades. We enrolled 1,088 participants from the Sanmin and Nanzih districts after the dengue outbreak of 2015, the largest in Taiwan since World War II, and found an overall DENV seroprevalence of 12.4% (95% confidence interval: 10.5–13.4%) based on the InBios DENV IgG ELISA kit. The ratios of clinically inapparent to symptomatic infections were 2.86 and 4.76 in Sanmin and Nanzih districts, respectively. Consistent with higher case numbers during recent outbreaks, the DENV seroprevalence was higher in Sanmin district (16.4%) than in Nanzih district (6.9%), suggesting district differences in seroprevalence and highlighting the importance of screening the DENV immune status of each individual before using the currently available DENV vaccine, Dengvaxia. In the two districts, the seroprevalence rates increased from 2.1% (in the 30–39-year age group) to 17.1% (60–69) and 50% (70–79). The pattern of a sharp and significant increase in seroprevalence in the 70–79-year age group correlated with a dramatic increase in the proportion of clinically severe DENV infections among total dengue cases in that age group. This differed from observations in the Americas and Southeast Asia and suggested that a large proportion of monotypically immune individuals together with other risk factors may contribute to clinically severe dengue among the elderly in Taiwan.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.