A new class of nanogel demonstrates modular biodistribution and affinity for bone. Nanogels, 67 nm in diameter and synthesized via an astoichiometric click-chemistry-inemulsion method, controllably display residual, free click-able functional groups. Functionalization with a bisphosphonate ligand results in significant binding to bone on the inner walls of marrow cavities, liver avoidance, and anti-osteoporotic effects.
Freestanding LiCoO/multiwall carbon nanotube/nanocellulose fibril (LCO-MWCNT-NCF) electrodes are fabricated by a vacuum filtration technique. The electrode has a high LCO loading of 20 mg/cm with excellent flexibility, uniform material distribution, and low surface resistivity. When coated with 2 ALD cycles of AlF, LCO-MWCNT-NCF has a high specific capacity of 216 mAh/g at 4.7 V. The freestanding AlF-coated electrode preserves 75.7% of its initial capacity after 100 cycles and 70% after 160 cycles of charge discharge. In contrast, electrodes coated with 2 ALD cycles of AlO cannot be cycled above 4.5 V. By elimination of the unnecessary weight of current collector, and increasing in the working voltage simultaneously, this freestanding LCO-MWCNT-NCF electrode can significantly improve the gravimetric and volumetric energy density of lithium ion batteries.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.