Serum IL-6 is increased in patients with acute kidney injury (AKI) and is associated with prolonged mechanical ventilation and increased mortality. Inhibition of IL-6 in mice with AKI reduces lung injury associated with a reduction in the chemokine CXCL1 and lung neutrophils. Whether circulating IL-6 or locally produced lung IL-6 mediates lung injury after AKI is unknown. We hypothesized that circulating IL-6 mediates lung injury after AKI by increasing lung endothelial CXCL1 production and subsequent neutrophil infiltration. To test the role of circulating IL-6 in AKI-mediated lung injury, recombinant murine IL-6 was administered to IL-6-deficient mice. To test the role of CXCL1 in AKI-mediated lung injury, CXCL1 was inhibited by use of CXCR2-deficient mice and anti-CXCL1 antibodies in mice with ischemic AKI or bilateral nephrectomy. Injection of recombinant IL-6 to IL-6-deficient mice with AKI increased lung CXCL1 and lung neutrophils. Lung endothelial CXCL1 was increased after AKI. CXCR2-deficient and CXCL1 antibody-treated mice with ischemic AKI or bilateral nephrectomy had reduced lung neutrophil content. In summary, we demonstrate for the first time that circulating IL-6 is a mediator of lung inflammation and injury after AKI. Since serum IL-6 is increased in patients with either AKI or acute lung injury and predicts prolonged mechanical ventilation and increased mortality in both conditions, our data suggest that serum IL-6 is not simply a biomarker of poor outcomes but a pathogenic mediator of lung injury.
Patients with acute kidney injury (AKI) have increased serum proinflammatory cytokines and an increased occurrence of respiratory complications. The aim of the present study was to examine the effect of renal and extrarenal cytokine production on AKI-mediated lung injury in mice. C57Bl/6 mice underwent sham surgery, splenectomy, ischemic AKI, or ischemic AKI with splenectomy and kidney, spleen, and liver cytokine mRNA, serum cytokines, and lung injury were examined. The proinflammatory cytokines IL-6, CXCL1, IL-1β, and TNF-α were increased in the kidney, spleen, and liver within 6 h of ischemic AKI. Since splenic proinflammatory cytokines were increased, we hypothesized that splenectomy would protect against AKI-mediated lung injury. On the contrary, splenectomy with AKI resulted in increased serum IL-6 and worse lung injury as judged by increased lung capillary leak, higher lung myeloperoxidase activity, and higher lung CXCL1 vs. AKI alone. Splenectomy itself was not associated with increased serum IL-6 or lung injury vs. sham. To investigate the mechanism of the increased proinflammatory response, splenic production of the anti-inflammatory cytokine IL-10 was determined and was markedly upregulated. To confirm that splenic IL-10 downregulates the proinflammatory response of AKI, IL-10 was administered to splenectomized mice with AKI, which reduced serum IL-6 and improved lung injury. Our data demonstrate that AKI in the absence of a counter anti-inflammatory response by splenic IL-10 production results in an exuberant proinflammatory response and lung injury.
Patients with acute kidney injury (AKI) have increased mortality; data suggest that the duration, not just severity, of AKI predicts increased mortality. Animal models suggest that AKI is a multisystem disease that deleteriously affects the lungs, heart, brain, intestine, and liver; notably, these effects have only been examined within 48 h, and longer term effects are unknown. In this study, we examined the longer term systemic effects of AKI, with a focus on lung injury. Mice were studied 7 days after an episode of ischemic AKI (22 min of renal pedicle clamping and then reperfusion) and numerous derangements were present including (1) lung inflammation; (2) increased serum proinflammatory cytokines; (3) liver injury; and (4) increased muscle catabolism. Since fluid overload may cause respiratory complications post‐AKI and fluid management is a critical component of post‐AKI care, we investigated various fluid administration strategies in the development of lung inflammation post‐AKI. Four different fluid strategies were tested – 100, 500, 1000, or 2000 μL of saline administered subcutaneously daily for 7 days. Interestingly, at 7 days post‐AKI, the 1000 and 2000 μL fluid groups had less severe AKI and less severe lung inflammation versus the 100 and 500 μL groups. In summary, our data demonstrate that appropriate fluid management after an episode of ischemic AKI led to both (1) faster recovery of kidney function and (2) significantly reduced lung inflammation, consistent with the notion that interventions to shorten AKI duration have the potential to reduce complications and improve patient outcomes.
ACC has a remarkable capacity for recurrence. To our knowledge, in the English-speaking area (PubMed), 10 cases of ACC metastatic to the kidney have been described to date, and this is the second reported case of kidney metastasis from primary lacrimal ACC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.