We present a thin-disk multipass amplifier as a power-scaling architecture for ultrafast ps and fs lasers. The system is industrially stable and supports burst functionality. Only minimal CPA is needed.
We demonstrate pulse compressibility from 840 fs to 38 fs of 10 mJ pulses from a thin-disk amplifier at a repetition rate of 3 kHz after nonlinear broadening in a multipass cell. In addition, the temporal-intensity contrast is enhanced via nonlinear ellipse rotation of more than a factor 50 with an optical efficiency of 56%. We believe this is the first published experimental combination of multipass cell-based nonlinear compression and nonlinear ellipse rotation-based contrast enhancement preserving both pulse compressibility and beam quality.
We present a high-energy laser source consisting of an ultrafast thin-disk amplifier followed by a nonlinear compression stage. At a repetition rate of 5 kHz, the drive laser provides a pulse energy of up to 200 mJ with a pulse duration below 500 fs. Nonlinear broadening is implemented inside a Herriott-type multipass cell purged with noble gas, allowing us to operate under different seeding conditions. Firstly, the nonlinear broadening of 64 mJ pulses is demonstrated in an argon-filled cell, showing a compressibility down to 32 fs. Finally, we employ helium as a nonlinear medium to increase the energy up to 200 mJ while maintaining compressibility below 50 fs. Such high-energy pulses with sub-50 fs duration hold great promise as drivers of secondary sources.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.