The Bacillus cereus group comprises numerous closely related species, including bioterrorism agent B. anthracis, foodborne pathogen B. cereus, and biopesticide B. thuringiensis. Differentiating organisms capable of causing illness or death from those used in industry is essential for risk assessment and outbreak preparedness. However, current species definitions facilitate species-phenotype incongruences, particularly when horizontally acquired genes are responsible for a phenotype. Using all publicly available B. cereus group genomes (n = 2,231), we show that current species definitions lead to overlapping genomospecies clusters, in which 66.2% of genomes belong to multiple genomospecies at a conventional 95 average nucleotide identity (ANI) genomospecies threshold. A genomospecies threshold of ≈92.5 ANI is shown to reflect a natural gap in genome similarity for the B. cereus group, and medoid genomes identified at this threshold are shown to yield resolvable genomospecies clusters with minimal overlap (six of 2,231 genomes assigned to multiple genomospecies; 0.269%). We thus propose a nomenclatural framework for the B. cereus group which accounts for (i) genomospecies using resolvable genomospecies clusters obtained at ≈92.5 ANI, (ii) established lineages of medical importance using a formal collection of subspecies names, and (iii) heterogeneity of clinically and industrially important phenotypes using a formalized and extended collection of biovar terms. We anticipate that the proposed nomenclature will remain interpretable to clinicians, without sacrificing genomic species definitions, which can in turn aid in pathogen surveillance; early detection of emerging, high-risk genotypes; and outbreak preparedness. IMPORTANCE Historical species definitions for many prokaryotes, including pathogens, have relied on phenotypic characteristics that are inconsistent with genome evolution. This scenario forces microbiologists and clinicians to face a tradeoff between taxonomic rigor and clinical interpretability. Using the Bacillus cereus group as a model, a conceptual framework for the taxonomic delineation of prokaryotes which reconciles genomic definitions of species with clinically and industrially relevant phenotypes is presented. The nomenclatural framework outlined here serves as a model for genomics-based bacterial taxonomy that moves beyond arbitrarily set genomospecies thresholds while maintaining congruence with phenotypes and historically important species names.
The Bacillus cereus group comprises nine species, several of which are pathogenic. Differentiating between isolates that may cause disease and those that do not is a matter of public health and economic importance, but it can be particularly challenging due to the high genomic similarity within the group. To this end, we have developed BTyper, a computational tool that employs a combination of (i) virulence gene-based typing, (ii) multilocus sequence typing (MLST), (iii) panC clade typing, and (iv) rpoB allelic typing to rapidly classify B. cereus group isolates using nucleotide sequencing data. BTyper was applied to a set of 662 B. cereus group genome assemblies to (i) identify anthrax-associated genes in non-B. anthracis members of the B. cereus group, and (ii) identify assemblies from B. cereus group strains with emetic potential. With BTyper, the anthrax toxin genes cya, lef, and pagA were detected in 8 genomes classified by the NCBI as B. cereus that clustered into two distinct groups using k-medoids clustering, while either the B. anthracis poly-␥-D-glutamate capsule biosynthesis genes capABCDE or the hyaluronic acid capsule hasA gene was detected in an additional 16 assemblies classified as either B. cereus or Bacillus thuringiensis isolated from clinical, environmental, and food sources. The emetic toxin genes cesABCD were detected in 24 assemblies belonging to panC clades III and VI that had been isolated from food, clinical, and environmental settings. The command line version of BTyper is available at https://github.com/lmc297/BTyper. In addition, BMiner, a companion application for analyzing multiple BTyper output files in aggregate, can be found at https://github.com/lmc297/BMiner. IMPORTANCE Bacillus cereus is a foodborne pathogen that is estimated to cause tens of thousands of illnesses each year in the United States alone. Even with molecular methods, it can be difficult to distinguish nonpathogenic B. cereus group isolates from their pathogenic counterparts, including the human pathogen Bacillus anthracis, which is responsible for anthrax, as well as the insect pathogen B. thuringiensis. By using the variety of typing schemes employed by BTyper, users can rapidly classify, characterize, and assess the virulence potential of any isolate using its nucleotide sequencing data.KEYWORDS Bacillus cereus group, taxonomy, virulence genes, whole-genome sequencing
The aim of the study was to investigate the mode of action of (-)-α-pinene in terms of its modulation of antibiotic resistance in Campylobacter jejuni. Broth microdilution and ethidium bromide accumulation assays were used to evaluate the (-)-α-pinene antimicrobial activity, modulation of antimicrobial resistance, and inhibition of antimicrobial efflux. The target antimicrobial efflux systems were identified using an insertion mutagenesis approach, and C. jejuni adaptation to (-)-α-pinene was evaluated using DNA microarrays. Knock-out mutants of the key up-regulated transcriptional regulators hspR and hrcA were constructed to investigate their roles in C. jejuni adaptation to several stress factors, including osmolytes, and pH, using Biolog phenotypical microarrays. Our data demonstrate that (-)-α-pinene efficiently modulates antibiotic resistance in C. jejuni by decreasing the minimum inhibitory concentrations of ciprofloxacin, erythromycin and triclosan by up to 512-fold. Furthermore, (-)-α-pinene promotes increased expression of cmeABC and another putative antimicrobial efflux gene, Cj1687. The ethidium bromide accumulation was greater in the wild-type strain than in the antimicrobial efflux mutant strains, which indicates that these antimicrobial efflux systems are a target of action of (-)-α-pinene. Additionally, (-)-α-pinene decreases membrane integrity, which suggests that enhanced microbial influx is a secondary mode of action of (-)-α-pinene. Transcriptomic analysis indicated that (-)-α-pinene disrupts multiple metabolic pathways, and particularly those involved in heat-shock responses. Thus, (-)-α-pinene has significant activity in the modulation of antibiotic resistance in C. jejuni, which appears to be mediated by multiple mechanisms that include inhibition of microbial efflux, decreased membrane integrity, and metabolic disruption. These data warrant further studies on (-)-α-pinene to develop its use in the control of antibiotic resistance in Campylobacter.
While some species in the Bacillus cereus group are well-characterized human pathogens (e.g., B. anthracis and B. cereus sensu stricto), the pathogenicity of other species (e.g., B. pseudomycoides) either has not been characterized or is presently not well understood. To provide an updated characterization of the pathogenic potential of species in the B. cereus group, we classified a set of 52 isolates, including 8 type strains and 44 isolates from dairy-associated sources, into 7 phylogenetic clades and characterized them for (i) the presence of toxin genes, (ii) phenotypic characteristics used for identification, and (iii) cytotoxicity to human epithelial cells. Overall, we found that B. cereus toxin genes are broadly distributed but are not consistently present within individual species and/or clades. After growth at 37°C, isolates within a clade did not typically show a consistent cytotoxicity phenotype, except for isolates in clade VI (B. weihenstephanensis/B. mycoides), where none of the isolates were cytotoxic, and isolates in clade I (B. pseudomycoides), which consistently displayed cytotoxic activity. Importantly, our study highlights that B. pseudomycoides is cytotoxic toward human cells. Our results indicate that the detection of toxin genes does not provide a reliable approach to predict the pathogenic potential of B. cereus group isolates, as the presence of toxin genes is not always consistent with cytotoxicity phenotype. Overall, our results suggest that isolates from multiple B. cereus group clades have the potential to cause foodborne illness, although cytotoxicity is not always consistently found among isolates within each clade.IMPORTANCE Despite the importance of the Bacillus cereus group as a foodborne pathogen, characterizations of the pathogenic potential of all B. cereus group species were lacking. We show here that B. pseudomycoides (clade I), which has been considered a harmless environmental microorganism, produces toxins and exhibits a phenotype consistent with the production of pore-forming toxins. Furthermore, B. mycoides/B. weihenstephanensis isolates (clade VI) did not show cytotoxicity when grown at 37°C, despite carrying multiple toxin genes. Overall, we show that the current standard methods to characterize B. cereus group isolates and to detect the presence of toxin genes are not reliable indicators of species, phylogenetic clades, or an isolate's cytotoxic capacity, suggesting that novel methods are still needed for differentiating pathogenic from nonpathogenic species within the B. cereus group. Our results also contribute data that are necessary to facilitate risk assessments and a better understanding as to which B. cereus group species are likely to cause foodborne illness.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.