SUMMARY
The immunoglobulin heavy-chain (Igh) locus undergoes large-scale contraction in pro-B cells, which facilitates VH-DJH recombination by juxtaposing distal VH genes next to the DJH-rearranged gene segment in the 3′ proximal Igh domain. By using high-resolution mapping of long-range interactions, we demonstrate that local interaction domains established the three-dimensional structure of the extended Igh locus in lymphoid progenitors. In pro- B cells, these local domains engaged in long-range interactions across the Igh locus, which depend on the regulators Pax5, YY1, and CTCF. The large VH gene cluster underwent flexible long-range interactions with the more rigidly structured proximal domain, which probably ensures similar participation of all VH genes in VH-DJH recombination to generate a diverse antibody repertoire. These long-range interactions appear to be an intrinsic feature of the VH gene cluster, because they are still generated upon mutation of the Eµ enhancer, IGCR1 insulator, or 3′ regulatory region in the proximal Igh domain.
V(H)-DJ(H) recombination of the immunoglobulin heavy chain (Igh) locus is temporally and spatially controlled during early B cell development, and yet no regulatory elements other than the V(H) gene promoters have been identified throughout the entire V(H) gene cluster. Here, we discovered regulatory sequences that are interspersed in the distal V(H) gene region. These conserved repeat elements were characterized by the presence of Pax5 transcription factor-dependent active chromatin by binding of the regulators Pax5, E2A, CTCF, and Rad21, as well as by Pax5-dependent antisense transcription in pro-B cells. The Pax5-activated intergenic repeat (PAIR) elements were no longer bound by Pax5 in pre-B and B cells consistent with the loss of antisense transcription, whereas E2A and CTCF interacted with PAIR elements throughout early B cell development. The pro-B cell-specific and Pax5-dependent activity of the PAIR elements suggests that they are involved in the regulation of distal V(H)-DJ(H) recombination at the Igh locus.
Pax5 is a critical regulator of B-cell commitment. Here, we identified direct Pax5 target genes by streptavidin-mediated ChIP-chip analysis of pro-B cells expressing in vivo biotinylated Pax5. By binding to promoters and enhancers, Pax5 directly regulates the expression of multiple transcription factor, cell surface receptor and signal transducer genes. One of the newly identified enhancers was shown by transgenic analysis to confer Pax5-dependent B-cell-specific activity to the Nedd9 gene controlling B-cell trafficking. Profiling of histone modifications in Pax5-deficient and wild-type pro-B cells demonstrated that Pax5 induces active chromatin at activated target genes, while eliminating active chromatin at repressed genes in committed pro-B cells. Pax5 rapidly induces these chromatin and transcription changes by recruiting chromatin-remodelling, histone-modifying and basal transcription factor complexes to its target genes. These data provide novel insight into the regulatory network and epigenetic regulation, by which Pax5 controls B-cell commitment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.