A previously undescribed isoelectric focusing technology allows cell signaling to be quantitatively assessed in <25 cells. Highresolution capillary isoelectric focusing allows isoforms and individual phosphorylation forms to be resolved, often to baseline, in a 400-nl capillary. Key to the method is photochemical capture of the resolved protein forms. Once immobilized, the proteins can be probed with specific antibodies flowed through the capillary. Antibodies bound to their targets are detected by chemiluminescence. Because chemiluminescent substrates are flowed through the capillary during detection, localized substrate depletion is overcome, giving excellent linearity of response across several orders of magnitude. By analyzing pan-specific antibody signals from individual resolved forms of a protein, each of these can be quantified, without the problems associated with using multiple antibodies with different binding avidities to detect individual protein forms.cell signaling ͉ immunoassay ͉ phosphorylation ͉ Western blot ͉ microfluidic
A set of universal guidelines is needed to determine the limit of detection (LOD) in PCR-based analyses of low-concentration DNA. In particular, environmental DNA (eDNA) studies require sensitive and reliable methods to detect rare and cryptic species through shed genetic material in environmental samples. Current strategies for assessing detection limits of eDNA are either too stringent or subjective, possibly resulting in biased estimates of species' presence. Here, a conservative LOD analysis grounded in analytical chemistry is proposed to correct for overestimated DNA concentrations predominantly caused by the concentration plateau, a nonlinear relationship between expected and measured DNA concentrations. We have used statistical criteria to establish formal mathematical models for both quantitative and droplet digital PCR. To assess the method, a new Grass Carp (Ctenopharyngodon idella) TaqMan assay was developed and tested on both PCR platforms using eDNA in water samples. The LOD adjustment reduced Grass Carp occupancy and detection estimates while increasing uncertainty-indicating that caution needs to be applied to eDNA data without LOD correction. Compared to quantitative PCR, digital PCR had higher occurrence estimates due to increased sensitivity and dilution of inhibitors at low concentrations. Without accurate LOD correction, species occurrence and detection probabilities based on eDNA estimates are prone to a source of bias that cannot be reduced by an increase in sample size or PCR replicates. Other applications also could benefit from a standardized LOD such as GMO food analysis and forensic and clinical diagnostics.
To inform management and conservation decisions, environmental DNA (eDNA) methods are used to detect genetic material shed into the water by imperiled and invasive species. Methodological enhancements are needed to reduce filter clogging, PCR inhibition, and false-negative detections when eDNA is at low concentrations. In the first of three simple experiments, we sought to ameliorate filter clogging from particulates and organic material through a scaled-up, multi-filter protocol. We combined four filters in a 5 mL Phenol-Chloroform-Isoamyl (PCI) procedure to allow for larger volumes of water (~1 L) to be filtered rapidly. Increasing the filtered water volume by four times resulted in 4.4X the yield of target DNA. Next, inhibition from organic material can reduce or block eDNA detections in PCR-based assays. To remove inhibitory compounds retained during eDNA isolation, we tested three methods to chemically strip inhibitors from eDNA molecules. The use of CTAB as a short-term (5–8 day) storage buffer, followed by a PCI isolation, resulted in the highest eDNA yields. Finally, as opposed to a linear relationship among increasing concentrations of filtered genomic eDNA, we observed a sharp change between the lower (70–280 ng) and higher (420–560 ng) amounts. This may be important for effectively precipitating eDNA during protocol testing.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.