This paper presents a development, as well as an investigation of a Model Matching Controller (MMC) design based on the SelfTuning Regulator (STR) framework for high performance aircraft with direct application to an F-16 aircraft flight control system. In combination with the Recursive Least Squares (RLS) identification, the MMC is developed and investigated for effectiveness on a detailed model of the aircraft. The popular robust Quantitative Feedback Theory (QFT) controller is also outlined and used to represent a baseline controller, for performance comparison during four simulated test flight maneuvers. In each of the four maneuvers, the proposed MMC provided consistently stable and satisfactory performance, including the challenging pull-up and pushover maneuvers. The baseline stationary controller has been found to become unstable in two of the four maneuvers tested. It also performs satisfactorily-to-arguably poorly in the remaining two as compared to the MMC. Simulation results presented in this investigation support a clear argument that the proposed MMC provides superior performance in the realm of automatic flight control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.