DMTCP (Distributed MultiThreaded CheckPointing) is a transparent user-level checkpointing package for distributed applications. Checkpointing and restart is demonstrated for a wide range of over 20 well known applications, including MATLAB, Python, TightVNC, MPICH2, OpenMPI, and runCMS. RunCMS runs as a 680 MB image in memory that includes 540 dynamic libraries, and is used for the CMS experiment of the Large Hadron Collider at CERN. DMTCP transparently checkpoints general cluster computations consisting of many nodes, processes, and threads; as well as typical desktop applications. On 128 distributed cores (32 nodes), checkpoint and restart times are typically 2 seconds, with negligible run-time overhead. Typical checkpoint times are reduced to 0.2 seconds when using forked checkpointing. Experimental results show that checkpoint time remains nearly constant as the number of nodes increases on a medium-size cluster.DMTCP automatically accounts for fork, exec, ssh, mutexes/semaphores, TCP/IP sockets, UNIX domain sockets, pipes, ptys (pseudo-terminals), terminal modes, ownership of controlling terminals, signal handlers, open file descriptors, shared open file descriptors, I/O (including the readline library), shared memory (via mmap), parent-child process relationships, pid virtualization, and other operating system artifacts. By emphasizing an unprivileged, user-space approach, compatibility is maintained across Linux kernels from 2.6.9 through the current 2.6.28. Since DMTCP is unprivileged and does not require special kernel modules or kernel patches, DMTCP can be incorporated and distributed as a checkpoint-restart module within some larger package.
Abstract-Approximating ideal program outputs is a common technique for solving computationally difficult problems, for adhering to processing or timing constraints, and for performance optimization in situations where perfect precision is not necessary. To this end, programmers often use approximation algorithms, iterative methods, data resampling, and other heuristics. However, programming such variable accuracy algorithms presents difficult challenges since the optimal algorithms and parameters may change with different accuracy requirements and usage environments. This problem is further compounded when multiple variable accuracy algorithms are nested together due to the complex way that accuracy requirements can propagate across algorithms and because of the size of the set of allowable compositions. As a result, programmers often deal with this issue in an ad-hoc manner that can sometimes violate sound programming practices such as maintaining library abstractions.In this paper, we propose language extensions that expose trade-offs between time and accuracy to the compiler. The compiler performs fully automatic compile-time and installtime autotuning and analyses in order to construct optimized algorithms to achieve any given target accuracy. We present novel compiler techniques and a structured genetic tuning algorithm to search the space of candidate algorithms and accuracies in the presence of recursion and sub-calls to other variable accuracy code. These techniques benefit both the library writer, by providing an easy way to describe and search the parameter and algorithmic choice space, and the library user, by allowing high level specification of accuracy requirements which are then met automatically without the need for the user to understand any algorithm-specific parameters. Additionally, we present a new suite of benchmarks, written in our language, to examine the efficacy of our techniques. Our experimental results show that by relaxing accuracy requirements, we can easily obtain performance improvements ranging from 1.1x to orders of magnitude of speedup.
A daunting challenge faced by program performance autotuning is input sensitivity, where the best autotuned configuration may vary with different input sets. This paper presents a novel two-level input learning algorithm to tackle the challenge for an important class of autotuning problems, algorithmic autotuning. The new approach uses a two-level input clustering method to automatically refine input grouping, feature selection, and classifier construction. Its design solves a series of open issues that are particularly essential to algorithmic autotuning, including the enormous optimization space, complex influence by deep input features, high cost in feature extraction, and variable accuracy of algorithmic choices. Experimental results show that the new solution yields up to a 3x speedup over using a single configuration for all inputs, and a 34x speedup over a traditional one-level method for addressing input sensitivity in program optimizations.
Program autotuning has been shown to achieve better or more portable performance in a number of domains. However, autotuners themselves are rarely portable between projects, for a number of reasons: using a domain-informed search space representation is critical to achieving good results; search spaces can be intractably large and require advanced machine learning techniques; and the landscape of search spaces can vary greatly between different problems, sometimes requiring domain specific search techniques to explore efficiently. This paper introduces OpenTuner, a new open source framework for building domain-specific multi-objective program autotuners. OpenTuner supports fully-customizable configuration representations, an extensible technique representation to allow for domain-specific techniques, and an easy to use interface for communicating with the program to be autotuned. A key capability inside OpenTuner is the use of ensembles of disparate search techniques simultaneously; techniques that perform well will dynamically be allocated a larger proportion of tests. We demonstrate the efficacy and generality of OpenTuner by building autotuners for 7 distinct projects and 16 total benchmarks, showing speedups over prior techniques of these projects of up to 2.8× with little programmer effort.
When dealing with dynamic, untrusted content, such as on the Web, software behavior must be sandboxed, typically through use of a language like JavaScript. However, even for such speciallydesigned languages, it is difficult to ensure the safety of highlyoptimized, dynamic language runtimes which, for efficiency, rely on advanced techniques such as Just-In-Time (JIT) compilation, large libraries of native-code support routines, and intricate mechanisms for multi-threading and garbage collection. Each new runtime provides a new potential attack surface and this security risk raises a barrier to the adoption of new languages for creating untrusted content.Removing this limitation, this paper introduces general mechanisms for safely and efficiently sandboxing software, such as dynamic language runtimes, that make use of advanced, lowlevel techniques like runtime code modification. Our languageindependent sandboxing builds on Software-based Fault Isolation (SFI), a traditionally static technique. We provide a more flexible form of SFI by adding new constraints and mechanisms that allow safety to be guaranteed despite runtime code modifications.We have added our extensions to both the x86-32 and x86-64 variants of a production-quality, SFI-based sandboxing platform; on those two architectures SFI mechanisms face different challenges. We have also ported two representative language platforms to our extended sandbox: the Mono common language runtime and the V8 JavaScript engine. In detailed evaluations, we find that sandboxing slowdown varies between different benchmarks, languages, and hardware platforms. Overheads are generally moderate and they are close to zero for some important benchmark/platform combinations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.