Activity-dependent competition shapes corticospinal (CS) axon outgrowth in the spinal cord during development. An important question in neural repair is whether activity can be used to promote outgrowth of CS axons in maturity. After injury, spared CS axons sprout and make new connections, but often not enough to restore function. We propose that electrically stimulating spared axons after injury will enhance sprouting and strengthen connections with spinal motor circuits. To study the effects of activity, we electrically stimulated CS tract axons in the medullary pyramid. To study the effects of injury, one pyramid was lesioned. We studied sparse ipsilateral CS projections of the intact pyramid as a model of the sparse connections preserved after CNS injury. We determined the capacity of CS axons to activate ipsilateral spinal motor circuits and traced their spinal projections. To understand the separate and combined contributions of injury and activity, we examined animals receiving stimulation only, injury only, and injury plus stimulation. Both stimulation and injury alone strengthened CS connectivity and increased outgrowth into the ipsilateral gray matter. Stimulation of spared axons after injury promoted outgrowth that reflected the sum of effects attributable to activity and injury alone. CS terminations were densest within the ventral motor territories of the cord, and connections in these animals were significantly stronger than after injury alone, indicating that activity augments injury-induced plasticity. We demonstrate that activity promotes plasticity in the mature CS system and that the interplay between activity and injury preferentially promotes connections with ventral spinal motor circuits.
Injury to the brain or spinal cord usually preserves some corticospinal (CS) connections. These residual circuits sprout spontaneously and in response to activity-based treatments. We hypothesized that augmenting activity in spared CS circuits would restore the skilled motor control lost after injury and augment outgrowth of CS terminations in the spinal cord. After selective injury of one half of the CS tract (CST) in the rat, we applied 10 d of electrical stimulation to the forelimb area of motor cortex of the spared half and tested motor performance for 30 d. Rats with injury and CST stimulation showed substantial improvements in skilled paw placement while walking over a horizontal ladder. By the end of the testing period, the walking errors of the previously impaired forelimb in rats with injury and stimulation returned to baseline, while the errors remained elevated in rats with injury only. Whereas the time to perform the task returned to normal in all animals, the pattern of errors returned to normal only in the stimulated group. Electrical stimulation also caused robust outgrowth of CST axon terminations in the ipsilateral spinal cord, the side of impairment, compared with rats with injury only. The outgrowth was directed to the normal gray matter territory of ipsilateral CST axon terminations. Thus, stimulation of spared CS circuits induced substantial axon outgrowth to the largely denervated side of the spinal cord and restored normal motor control in the previously impaired limbs.
Lesioning the peripheral branch of a dorsal root ganglion (DRG) neuron before injury of the central branch of the same neuron enables spontaneous regeneration of these spinal axons. This effect is cAMP and transcription dependent. Here, we show that the cytokine interleukin-6 (IL-6) is upregulated in DRG neurons after either a conditioning lesion or treatment with dibutyryl-cAMP. In culture, IL-6 allows neurons to grow in the presence of inhibitors of regeneration present in myelin. Importantly, intrathecal delivery of IL-6 to DRG neurons blocks inhibition by myelin both in vitro and in vivo, effectively mimicking the conditioning lesion. Blocking IL-6 signaling has no effect on the ability of cAMP to overcome myelin inhibitors. Consistent with this, IL-6-deficient mice respond to a conditioning lesion as effectively as wild-type mice. We conclude that IL-6 can mimic both the cAMP effect and the conditioning lesion effect but is not an essential component of either response.
We have completed the first large-scale gene expression study of acute spinal cord injury (SCI) in rat. Oligonucleotide microarrays containing 1,200 gene-specific probes were used to quantify mRNA levels, relative to uninjured controls, in spinal cords injured using a standard contusion model. Our results revealed a marked loss of neuron-specific mRNAs at the injury site. The surviving cells showed a characteristic inflammatory response that started at the injury site and spread to the distal cord. Changes in several mRNA levels were associated with putative regenerative responses in the spinal cord. Notably, phosphodiesterase 4, nestin, glia-derived neurite promoting factor, and GAP-43 mRNAs increased significantly. Other mRNAs clustered temporally and spatially with these regeneration-associated genes. Thus we have described global patterns of gene expression following acute SCI, and we have identified targets for future study and possible therapeutic intervention.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.