Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recently identified coronavirus that causes the respiratory disease known as coronavirus disease 2019 (COVID-19). Despite the urgent need, we still do not fully understand the molecular basis of SARS-CoV-2 pathogenesis. Here, we comprehensively define the interactions between SARS-CoV-2 proteins and human RNAs. NSP16 binds to the mRNA recognition domains of the U1 and U2 splicing RNAs and acts to suppress global mRNA splicing upon SARS-CoV-2 infection. NSP1 binds to 18S ribosomal RNA in the mRNA entry channel of the ribosome and leads to global inhibition of mRNA translation upon infection. Finally, NSP8 and NSP9 bind to the 7SL RNA in the signal recognition particle and interfere with protein trafficking to the cell membrane upon infection. Disruption of each of these essential cellular functions acts to suppress the interferon response to viral infection. Our results uncover a multipronged strategy utilized by SARS-CoV-2 to antagonize essential cellular processes to suppress host defenses.
The relationship between hantaviruses and their reservoir hosts is not well understood. We successfully passaged a mouse-adapted strain of Sin Nombre virus from deer mice (Peromyscus maniculatus) by i.m. inoculation of 4-to 6-wk-old deer mouse pups. After inoculation with 5 ID50, antibodies to the nucleocapsid (N) antigen first became detectable at 14 d whereas neutralizing antibodies were detectable by 7 d. Viral N antigen first began to appear in heart, lung, liver, spleen, and͞or kidney by 7 d, whereas viral RNA was present in those tissues as well as in thymus, salivary gland, intestine, white fat, and brown fat. By 14 d nearly all tissues examined displayed both viral RNA and N antigen. We noted no consistent histopathologic changes associated with infection, even when RNA load was high. Viral RNA titers peaked on 21 d in most tissues, then began to decline by 28 d. Infection persisted for at least 90 d. The RNA titers were highest in heart, lung, and brown fat. Deer mice can be experimentally infected with Sin Nombre virus, which now allows provocative examination of the virus-host relationship. The prominent involvement of heart, lung, and brown fat suggests that these sites may be important tissues for early virus replication or for maintenance of the virus in nature.
There is an urgent need for antiviral agents that treat SARS-CoV-2 infection. We screened a library of 1,900 clinically safe drugs against OC43, a human beta-coronavirus that causes the common cold and evaluated the top hits against SARS-CoV-2. Twenty drugs significantly inhibited replication of both viruses in vitro. Eight of these drugs inhibited the activity of the SARS-CoV-2 main protease, 3CLpro, with the most potent being masitinib, an orally bioavailable tyrosine kinase inhibitor. X-ray crystallography and biochemistry show that masitinib acts as a competitive inhibitor of 3CLpro. Mice infected with SARS-CoV-2 and then treated with masitinib showed >200-fold reduction in viral titers in the lungs and nose, as well as reduced lung inflammation. Masitinib was also effective in vitro against all tested variants of concern (B.1.1.7, B.1.351 and P.1).
To address Sin Nombre (SN) virus persistence in deer mice, we sacrificed experimentally infected deer mice at eight time points from day 21 to day 217 postinoculation (p.i.) and examined their tissues for viral nucleocapsid (N) antigen expression and both negative-strand (genomic) and positive-strand (replicative/ mRNA) viral S segment RNA titers. All the animals that we inoculated developed persistent infections, and SN virus could be isolated from tissues throughout the course of infection. The transition from an acute to a persistent pattern of infection appeared to occur between days 60 and 90 p.i. Beginning on day 60 p.i., the heart, brown adipose tissue (BAT), and lung retained antigen expression and genomic viral RNA the most frequently. We found a statistically significant association among the presence of replicative RNA in the heart, lung, and BAT, widespread antigen expression (in >5 tissues), and RNA viremia. Of these three tissues, the heart retained negative-strand RNA and viral N antigen the most consistently (in 25 of 26 animals). During persistence, there were two distinct patterns of infection: restricted versus disseminated tissue involvement. Mice with the restricted pattern exhibited N antigen expression in <3 tissues, an absence of viral RNA in the blood, neutralizing antibody titers of <1:1,280 (P ؍ 0.01), and no replicative RNA in the heart, lung, or BAT. Those with the "disseminated" pattern showed N antigen expression in >5 tissues, neutralizing antibody titers of 1:160 to 1:20,480, replicative RNA in the heart, lung, and BAT at a high frequency, and RNA viremia. Virus could be isolated consistently only from mice that demonstrated the disseminated pattern. The heart, lung, and BAT are important sites for the replication and maintenance of SN virus during persistent infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.