Hexavalent chromium [Cr(VI)] is a known carcinogen when inhaled. However, inhalational exposure to Cr(VI) affects only a small portion of the population, mainly by occupational exposures. In contrast, oral exposure to Cr(VI) is widespread and affects many people throughout the globe. In 2008, the National Toxicology Program (NTP) released a 2-year study demonstrating that ingested Cr(VI) was carcinogenic in rats and mice. The effects of Cr(VI) oral exposure is mitigated by reduction in the gut, however a portion evades the reductive detoxification and reaches target tissues. Once Cr(VI) enters the cell, it ultimately gets reduced to Cr(III), which mediates its toxicity via induction of oxidative stress during the reduction while Cr intermediates react with protein and DNA. Cr(III) can form adducts with DNA that may lead to mutations. This review will discuss the potential adverse effects of oral exposure to Cr(VI) by presenting up-to-date human and animal studies, examining the underlying mechanisms that mediate Cr(VI) toxicity, as well as highlighting opportunities for future research.
Cellular response to changes in oxygen tension during normal development or pathologic processes is, in part, regulated by hypoxia-inducible factor (HIF), an oxygen-sensitive transcription factor. HIF activity is primarily controlled through post-translational modifications and stabilization of HIF-1a and HIF-2a proteins and is regulated by a number of cellular pathways involving both oxygen-dependent and -independent mechanisms. Stabilization of HIF-1a activates transcription of genes that participate in key pathways in carcinogenesis, such as angiogenesis, dedifferentiation, and invasion. Since its discovery more than two decades ago, HIF-1a has become a hot topic in molecular research and has been implicated not only in disease pathology but also in prognosis. In this review, we will focus on recent insights into HIF-1a regulation, function, and gene expression. We will also discuss emerging data on the involvement of HIF in cancer prognosis and therapeutic interventions.
DNA methylation plays an intricate role in the regulation of gene expression and events that compromise the integrity of the methylome may potentially contribute to disease development. DNA methylation is a reversible and regulatory modification that elicits a cascade of events leading to chromatin condensation and gene silencing. In general, normal cells are characterized by gene-specific hypomethylation and global hypermethylation, while cancer cells portray a reverse profile to this norm. The unique methylome displayed in cancer cells is induced after exposure to carcinogenic metals such as nickel, arsenic, cadmium, and chromium (VI). These metals alter the DNA methylation profile by provoking both hyper- and hypomethylation events. The metal-stimulated deviations to the methylome are possible mechanisms for metal-induced carcinogenesis and may provide potential biomarkers for cancer detection. Development of therapies based on the cancer methylome requires further research including human studies that supply results with larger impact and higher human relevance.
Background: Canonical histones are regulated by stem-loop-binding protein (SLBP) and are expressed during S phase. Results: Arsenic decreases SLBP levels via epigenetic mechanisms, and histone mRNAs acquire a poly(A) tail. Conclusion: Poly(A) tails allow for the presence of canonical histones outside of S phase. Significance: These mechanisms may be involved in arsenic-induced carcinogenesis.
Canonical histones are synthesized with a peak in S-phase, whereas histone variants are formed throughout the cell cycle. Unlike messenger RNA (mRNA) for all other genes with a poly(A) tail, canonical histone mRNAs contain a stem-loop structure at their 3’-ends. This stem-loop structure is the binding site for the stem-loop binding protein (SLBP), a protein involved in canonical histone mRNA processing. Recently, we found that arsenic depletes SLBP by enhancing its proteasomal degradation and epigenetically silencing the promoter of the SLBP gene. The loss of SLBP disrupts histone mRNA processing and induces aberrant polyadenylation of canonical histone H3.1 mRNA. Here, we present new data supporting the idea that the lack of SLBP allows the H3.1 mRNA to be polyadenylated using the downstream poly(A) signal. SLBP was also depleted in arsenic-transformed bronchial epithelial cells (BEAS-2B), which led us to hypothesize the involvement of SLBP and polyadenylated H3.1 mRNA in carcinogenesis. Here, for the first time, we report that overexpression of H3.1 polyadenylated mRNA and knockdown of SLBP enhances anchorage-independent cell growth. A pcDNA-H3.1 vector with a poly(A) signal sequence was stably transfected into BEAS-2B cells. Polyadenylated H3.1 mRNA and exogenous H3.1 protein levels were significantly increased in cells containing the pcDNA-H3.1 vector. A soft agar assay revealed that cells containing the vector formed significantly higher numbers of colonies compared to wild-type cells. Moreover, small hairpin RNA for SLBP (shSLBP) was used to knockdown the expression of SLBP. Cells stably transfected with the shSLBP vector grew significantly more colonies in soft agar than cells transfected with a control vector. This data suggests that upregulation of polyadenylated H3.1 mRNA holds potential as a mechanism to facilitate carcinogenesis by toxicants such as arsenic that deplete SLBP.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.