Escherichia coli MutY is a 39 kDa adenine DNA glycosylase and 3' apurinic/apyrimidinic (AP) lyase that is active on DNA substrates containing A/G, A/C, or A/8-oxoG mismatches. 8-oxoG (7,8-dihydro-8-oxoguanine or GO) is a major stable product of oxidative damage, and A/GO mismatches may be particularly important biological substrates for MutY. Proteolytic digestion of MutY using thermolysin was found to produce two relatively stable fragments of 25 and 12 kDa. The 25 kDa fragment begins at the N terminus of MutY and spans the region homologous with E. coli endonuclease III, a DNA glycosylase/AP lyase that repairs oxidatively damaged pyrimidines. The 12 kDa fragment, which consists of much of the rest of MutY, had no detectable activity. The purified 25 kDa fragment (M25) had nearly wild-type binding and cleavage activities with A/G-mismatched substrates. Binding to A/GO-mismatched DNA, however, was dramatically reduced in M25 compared to that in intact protein. Borohydride-dependent enzyme-DNA cross-linking, which is a hallmark of the reaction of several DNA glycosylases that possess concomitant AP lyase activity, was also substantially reduced when M25 was allowed to react with A/GO-mismatched DNA. The significant differences in M25 recognition and reactivity with A/G and A/GO mismatches suggest that the C-terminal region of MutY, a region with no homologous counterpart in E. coli endonuclease III, plays an important role in the repair of mismatched DNA arising from oxidation damage.
Escherichia coli MutY protein cleaves A/G- or a/7,8-dihydro-8-oxo-guanine (A/GO)-containing DNA on the A-strand by N-glycosylase and apurinic/apyrimidinic endonuclease or lyase activities. In this paper, we show that MutY can be trapped in a stable covalent enzyme-DNA intermediate in the presence of sodium borohydride, a new finding that supports the grouping of MutY in that class of DNA glycosylases that possess concomitant apurinic/apyrimidinic lyase activity. To potentially help determine the substrate recognition site of MutY, mutant proteins were constructed. MutY proteins with a Gly116 --> Ala (G116A) or Asp (G116D) mutation had reduced binding affinities for both A/G- and A/GO-containing DNA substrates. The catalytic parameters, however, were differentially affected. While A/G- and A/GO-containing DNA were cleaved by MutY with specificity constants (kcat/Km) of 10 and 3.3 min-1 microM-1, respectively, MutY(G116D) cleaved these DNAs 2, 300- and 9-fold less efficiently. The catalytic activities of MutY(G116A) with A/G- and A/GO-containing DNA were about the same as that of wild-type MutY. Both MutY(G116A) and MutY(G116D) could be trapped in covalent intermediates with A/GO-containing DNA, but with lower efficiencies than the wild-type enzyme in the presence of sodium borohydride. MutY(G116A) also formed a covalent intermediate with A/G-containing DNA, but MutY(G116D) did not. Since Gly116 of MutY lies in a region that is highly conserved among several DNA glycosylases, it is likely this conserved region is in the proximity of the substrate binding and/or catalytic sites.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.