Electrical waves traveling throughout the myocardium elicit muscle contractions responsible for pumping blood throughout the body. The shape and direction of these waves depend on the spatial arrangement of ventricular myocytes, termed fiber orientation. In computational studies simulating electrical wave propagation or mechanical contraction in the heart, accurately representing fiber orientation is critical so that model predictions corroborate with experimental data. Typically, fiber orientation is assigned to heart models based on Diffusion Tensor Imaging (DTI) data, yet few alternative methodologies exist if DTI data is noisy or absent. Here we present a novel Laplace–Dirichlet Rule-Based (LDRB) algorithm to perform this task with speed, precision, and high usability. We demonstrate the application of the LDRB algorithm in an image-based computational model of the canine ventricles. Simulations of electrical activation in this model are compared to those in the same geometrical model but with DTI-derived fiber orientation. The results demonstrate that activation patterns from simulations with LDRB and DTI-derived fiber orientations are nearly indistinguishable, with relative differences ≤6%, absolute mean differences in activation times ≤3.15 ms, and positive correlations ≥0.99. These results convincingly show that the LDRB algorithm is a robust alternative to DTI for assigning fiber orientation to computational heart models.
A long-sought, and thus far elusive, goal has been to develop drugs to manage diseases of excitability. One such disease that affects millions each year is cardiac arrhythmia, which occurs when electrical impulses in the heart become disordered, sometimes causing sudden death. Pharmacological management of cardiac arrhythmia has failed because it is not possible to predict how drugs that target cardiac ion channels, and have intrinsically complex dynamic interactions with ion channels, will alter the emergent electrical behavior generated in the heart. Here, we applied a computational model, which was informed and validated by experimental data, that defined key measurable parameters necessary to simulate the interaction kinetics of the anti-arrhythmic drugs flecainide and lidocaine with cardiac sodium channels. We then used the model to predict the effects of these drugs on normal human ventricular cellular and tissue electrical activity in the setting of a common arrhythmia trigger, spontaneous ventricular ectopy. The model forecasts the clinically relevant concentrations at which flecainide and lidocaine exacerbate, rather than ameliorate, arrhythmia. Experiments in rabbit hearts and simulations in human ventricles based on magnetic resonance images validated the model predictions. This computational framework initiates the first steps toward development of a virtual drug-screening system that models drug-channel interactions and predicts the effects of drugs on emergent electrical activity in the heart.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.