Abstract. Secondary organic aerosol (SOA) accounts for a significant fraction of ambient tropospheric aerosol and a detailed knowledge of the formation, properties and transformation of SOA is therefore required to evaluate its impact on atmospheric processes, climate and human health. The chemical and physical processes associated with SOA formation are complex and varied, and, despite considerable progress in recent years, a quantitative and predictive understanding of SOA formation does not exist and therefore represents a major research challenge in atmospheric science. This review begins with an update on the current state of knowledge on the global SOA budget and is followed by an overview of the atmospheric degradation mechanisms for SOA precursors, gas-particle partitioning theory and the analytical techniques used to determine the chemical composition of SOA. A survey of recent laboratory, field and modeling studies is also presented. The following topical and emerging issues are highlighted and discussed in detail: molecular characterization of biogenic SOA constituents, condensed phase reactions and oligomerization, the interaction of atmospheric organic components with sulfuric acid, the chemical and photochemical processing of organics in the atmospheric aqueous phase, aerosol formation from real plant emissions, interaction of atmospheric organic components with water, thermodynamics and mixtures in atmospheric models. Finally, the major challenges ahead in laboratory, field and modeling studies of SOA are discussed and recommendations for future research directions are proposed.
Isoprene is a significant source of atmospheric organic aerosol; however, the oxidation pathways that lead to secondary organic aerosol (SOA) have remained elusive. Here, we identify the role of two key reactive intermediates, epoxydiols of isoprene (IEPOX ¼ β-IEPOX þ δ-IEPOX) and methacryloylperoxynitrate (MPAN), which are formed during isoprene oxidation under low-and high-NO x conditions, respectively. Isoprene low-NO x SOA is enhanced in the presence of acidified sulfate seed aerosol (mass yield 28.6%) over that in the presence of neutral aerosol (mass yield 1.3%). Increased uptake of IEPOX by acid-catalyzed particle-phase reactions is shown to explain this enhancement. Under high-NO x conditions, isoprene SOA formation occurs through oxidation of its secondgeneration product, MPAN. The similarity of the composition of SOA formed from the photooxidation of MPAN to that formed from isoprene and methacrolein demonstrates the role of MPAN in the formation of isoprene high-NO x SOA. Reactions of IEPOX and MPAN in the presence of anthropogenic pollutants (i.e., acidic aerosol produced from the oxidation of SO 2 and NO 2 , respectively) could be a substantial source of "missing urban SOA" not included in current atmospheric models.acid-catalyzed particle-phase reactions | epoxides | methacryloylperoxynitrate | organosulfates I soprene (2-methyl-1,3-butadiene, C 5 H 8 ) is the most abundant nonmethane hydrocarbon emitted into the Earth's atmosphere, with emissions estimated to be 440-660 TgC yr −1 (1). The atmospheric hydroxyl (OH) radical-initiated oxidation of isoprene, so-called photooxidation, plays a key role in establishing the balance of hydrogen oxide (HO x ¼ OH þ HO 2 ) radicals in vegetated areas (2, 3) and influences urban ozone formation in populated areas blanketed with biogenic emissions (4). Formation of low-volatility compounds during isoprene oxidation has been estimated to be the single largest source of atmospheric organic aerosol [i.e., secondary organic aerosol (SOA)] (5-8).The photooxidation of unsaturated volatile organic compounds (VOCs) proceeds through formation of a hydroxy peroxy (RO 2 ) radical, the fate of which depends on the concentration of nitrogen oxides (NO x ¼ NO þ NO 2 ). Higher SOA yields from isoprene are observed under low-NO x (or NO x -free) conditions; in this regime, RO 2 radicals react primarily with HO 2 , a pathway that tends to produce lower-volatility oxidation products than that involving the reaction of RO 2 with NO (9-11). Under high-NO x conditions, RO 2 radicals react with NO to produce alkoxy (RO) radicals, or as a minor pathway, organic nitrates (RONO 2 ). For small VOCs (≤C 10 ), like isoprene, these RO radicals generally fragment into smaller more volatile products, resulting in small amounts of SOA (9-11). Despite the fact that SOA from isoprene has been extensively studied (8), the chemical pathways to its formation under both low-and high-NO x conditions have remained unclear. In this study we examine the mechanism of isoprene SOA formation in these two ...
Organosulfates of isoprene, alpha-pinene, and beta-pinene have recently been identified in both laboratory-generated and ambient secondary organic aerosol (SOA). In this study, the mechanism and ubiquity of organosulfate formation in biogenic SOA is investigated by a comprehensive series of laboratory photooxidation (i.e., OH-initiated oxidation) and nighttime oxidation (i.e., NO3-initiated oxidation under dark conditions) experiments using nine monoterpenes (alpha-pinene, beta-pinene, d-limonene, l-limonene, alpha-terpinene, gamma-terpinene, terpinolene, Delta(3)-carene, and beta-phellandrene) and three monoterpenes (alpha-pinene, d-limonene, and l-limonene), respectively. Organosulfates were characterized using liquid chromatographic techniques coupled to electrospray ionization combined with both linear ion trap and high-resolution time-of-flight mass spectrometry. Organosulfates are formed only when monoterpenes are oxidized in the presence of acidified sulfate seed aerosol, a result consistent with prior work. Archived laboratory-generated isoprene SOA and ambient filter samples collected from the southeastern U.S. were reexamined for organosulfates. By comparing the tandem mass spectrometric and accurate mass measurements collected for both the laboratory-generated and ambient aerosol, previously uncharacterized ambient organic aerosol components are found to be organosulfates of isoprene, alpha-pinene, beta-pinene, and limonene-like monoterpenes (e.g., myrcene), demonstrating the ubiquity of organosulfate formation in ambient SOA. Several of the organosulfates of isoprene and of the monoterpenes characterized in this study are ambient tracer compounds for the occurrence of biogenic SOA formation under acidic conditions. Furthermore, the nighttime oxidation experiments conducted under highly acidic conditions reveal a viable mechanism for the formation of previously identified nitrooxy organosulfates found in ambient nighttime aerosol samples. We estimate that the organosulfate contribution to the total organic mass fraction of ambient aerosol collected from K-puszta, Hungary, a field site with a similar organosulfate composition as that found in the present study for the southeastern U.S., can be as high as 30%.
Abstract. Elemental compositions of organic aerosol (OA) particles provide useful constraints on OA sources, chemical evolution, and effects. The Aerodyne high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) is widely used to measure OA elemental composition. This study evaluates AMS measurements of atomic oxygento-carbon (O : C), hydrogen-to-carbon (H : C), and organic mass-to-organic carbon (OM : OC) ratios, and of carbon oxidation state (OS C ) for a vastly expanded laboratory data set of multifunctional oxidized OA standards. For the expanded standard data set, the method introduced by Aiken et al. (2008), which uses experimentally measured ion intensities at all ions to determine elemental ratios (referred to here as "Aiken-Explicit"), reproduces known O : C and H : C ratio values within 20 % (average absolute value of relative errors) and 12 %, respectively. The more commonly used method, which uses empirically estimated H 2 O + and CO + ion intensities to avoid gas phase air interferences at these ions (referred to here as "Aiken-Ambient"), reproduces O : C and H : C of multifunctional oxidized species within 28 and 14 % of known values. The values from the latter method are systematically biased low, however, with larger biases observed for alcohols and simple diacids. A detailed examination of the H 2 O + , CO + , and CO + 2 fragments in the high-resolution mass spectra of the standard compounds indicates that the Aiken-Ambient method underestimates the CO + and especially H 2 O + produced from many oxidized species. Combined AMS-vacuum ultraviolet (VUV) ionization measurements indicate that these ions are produced by dehydration and decarboxylation on the AMS vaporizer (usually operated at 600 • C). Thermal decomposition is observed to be efficient at vaporizer temperatures down to 200 • C. These results are used together to develop an "Improved-Ambient" elemental analysis method for AMS spectra measured in air. The Improved-Ambient method uses specific ion fragments as markers to correct for molecular functionality-dependent systematic biases and reproduces known O : C (H : C) ratios of individual oxidized standards within 28 % (13 %) of the known molecular values. The error in Improved-Ambient O : C (H : C) values is smaller for theoretical standard mixtures of the oxidized organic standards, which are more representative of the complex mix of species present in ambient Published by Copernicus Publications on behalf of the European Geosciences Union. M. R. Canagaratna et al.: Elemental ratio measurements of organic compoundsOA. For ambient OA, the Improved-Ambient method produces O : C (H : C) values that are 27 % (11 %) larger than previously published Aiken-Ambient values; a corresponding increase of 9 % is observed for OM : OC values. These results imply that ambient OA has a higher relative oxygen content than previously estimated. The OS C values calculated for ambient OA by the two methods agree well, however (average relative difference of 0.06 OS C units). This indicates that...
Recent work in our laboratory has shown that the photooxidation of isoprene (2-methyl-1,3-butadiene, C 5 H 8 ) leads to the formation of secondary organic aerosol (SOA). In the current study, the chemical composition of SOA from the photooxidation of isoprene over the full range of NO x conditions is investigated through a series of controlled laboratory chamber experiments. SOA composition is studied using a wide range of experimental techniques: electrospray ionization-mass spectrometry, matrix-assisted laser desorption ionization-mass spectrometry, high-resolution mass spectrometry, online aerosol mass spectrometry, gas chromatography/mass spectrometry, and an iodometric-spectroscopic method. Oligomerization was observed to be an important SOA formation pathway in all cases; however, the nature of the oligomers depends strongly on the NO x level, with acidic products formed under high-NO x conditions only. We present, to our knowledge, the first evidence of particle-phase esterification reactions in SOA, where the further oxidation of the isoprene oxidation product methacrolein under high-NO x conditions produces polyesters involving 2-methylglyceric acid as a key monomeric unit. These oligomers comprise ∼22-34% of the high-NO x SOA mass. Under low-NO x conditions, organic peroxides contribute significantly to the low-NO x SOA mass (∼61% when SOA forms by nucleation and ∼25-30% in the presence of seed particles). The contribution of organic peroxides in the SOA decreases with time, indicating photochemical aging. Hemiacetal dimers are found to form from C 5 alkene triols and 2-methyltetrols under low-NO x conditions; these compounds are also found in aerosol collected from the Amazonian rainforest, demonstrating the atmospheric relevance of these low-NO x chamber experiments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.